Composite polymers have become widely used in industries such as the aerospace, automobile, and civil construction industries. Continuous monitoring is essential to optimize the composite components’ performance and durability. This paper describes the concept of a distributed fiber optic smart textile (DFOST) embedded into a composite panel that can be implemented during the fabrication process of bridges, planes, or vehicles without damaging the integrity of the composite. The smart textile used an embroidery method to create DFOST for easy installation between composite laminates. It also allows different layout patterns to provide two- or three-dimensional measurements. The DFOST system can then measure strain, temperature, and displacement changes, providing critical information for structural assessment. The DFOST was interrogated by using an optical frequency domain reflectometry (OFDR). It could measure strain variation during the dynamic and static test with a spatial resolution of 2 mm and a minimum strain resolution of 10 μϵ. This paper focuses on the study of strain measurement.
Distributed fiber optic sensors (DFOS) have become a new method for continuously monitoring infrastructure status. However, the fiber’s fragility and the installation’s complexity are some of the main drawbacks of this monitoring approach. This paper aims to overcome this limitation by embedding a fiber optic sensor into a textile for a faster and easier installation process. To demonstrate its feasibility, the smart textile was installed on a pedestrian bridge at the University of Massachusetts Lowell. In addition, dynamic strain data were collected for two different years (2021 and 2022) using Optical Frequency Domain Reflectometry (OFDR) and compared, to determine the variability of the data after one year of installation. We determined that no significant change was observed in the response pattern, and the difference between the amplitude of both datasets was 14% (one person jumping on the bridge) and 43% (two people jumping) at the first frequency band. This result shows the proposed system’s functionality after one year of installation, as well as its potential use for traffic monitoring.
A fiber optic pressure sensor that can survive 2200 psi and 140 °C was developed. The sensor’s pressure sensitivity was measured to be 14 times higher than bare FBG when tested inside stacks of ultra-high-molecular-weight polyethylene (UHMWPE) composite fabric. The sensitivity can be further improved 6-fold through the Vernier effect. Its tiny sensing length (hundreds of microns) and uniform outer diameter (125 µm) make it a suitable candidate for real-time point pressure monitoring under harsh environments with limited space, such as in composite-forming procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.