Background: In-utero exposure to mercury and other trace metals pose a significant threat to child health and development, but exposures and health impacts in artisanal and small-scale gold mining (ASGM) environments are poorly defined. Objectives:We describe the CONAMAD study design, a prospective birth cohort consisting of multiparous women (18 and over) living in rural and peri-urban Peruvian Amazon communities exposed to ASGM. Methods: Pregnant women are enrolled from health posts across four zones of Madre de Dios, Peru. Data are collected at enrollment, childbirth, and (planned) 36-48 months. At enrollment, hair samples for mercury assessment, demographic and clinical data are obtained. At birth, we obtain venous and cord blood, placenta, hair, toenails, and saliva. Findings: Two hundred seventy mothers were enrolled at an average 20 weeks gestational age with no differences in maternal characteristics across zones. Two hundred fifteen mothers were successfully followed at birth. We obtained 214 maternal and cord blood samples, 211 maternal and 212 infant hair samples, 212 placenta samples, 210 infant saliva samples, and 214 infant dried blood spots. Data collected will allow for testing our primary hypotheses of maternal malnutrition modifying ratios of cord:maternal blood total mercury (tHg), cord blood:maternal hair tHg, and infant:maternal hair tHg, and whether chemical mixtures (Hg, Pb, Cd) have synergistic effects on infant neurodevelopment.Conclusions: CONAMAD is designed to collect and store samples for future processing and hypothesis testing associated with in-utero mercury exposure and child development. We have completed the exposure assessments and will conduct a follow-up of mothers to evaluate early child development outcomes, including developmental delay and growth. These data offer insights into disease mechanisms, exposure prevention, and policy guidance for countries where ASGM is prevalent.
Background American cutaneous leishmaniasis (CL) is a neglected tropical disease typically associated with men working in remote, sylvatic environments. We sought to identify CL risk factors in a highly deforested region where anecdotal reports suggested an atypical proportion of women and children were infected with CL raising concern among authorities that transmission was shifting towards domestic spaces and population centers. Methods We describe the characteristics of CL patients from four participating clinics after digitizing up to 10 years of patient data from each clinic’s CL registries. We assessed risk factors of CL associated with intradomestic, peridomestic, or non-domestic transmission through a matched case-control study with 63 patients who had visited these same clinics for CL (cases) or other medical reasons (controls) between January 2014 and August 2016. The study consisted of an in-home interview of participants by a trained field worker using a standard questionnaire. Risk factors were identified using bivariable and multivariable conditional logistic regression. Results Between 2007 and 2016, a total of 529 confirmed CL positives were recorded in the available CL registries. Children and working aged women made up 58.6% of the cases. Our final model suggests that the odds of sleeping in or very near an agricultural field were five times greater in cases than controls (p = 0.025). Survey data indicate that women, children, and men have similar propensities to both visit and sleep in or near agricultural fields. Conclusions Women and children may be underappreciated as CL risk groups in agriculturally dependent regions. Despite the age-sex breakdown of clinical CL patients and high rates of deforestation occurring in the study area, transmission is mostly occurring outside of the largest population centers. Curbing transmission in non-domestic spaces may be limited to decreasing exposure to sandflies during the evening, nighttime, and early morning hours. Our paper serves as a cautionary tale for those relying solely on the demographic information obtained from clinic-based data to understand basic epidemiological trends of vector-borne infections.
Figure 1. Image of patient's left foot prior on the day of presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.