East Africa experienced in the 2001–11 time period some of the worst drought events to date, culminating in the high-impact drought of 2010/11. Long-term monitoring of precipitation is thus essential, and satellite-based precipitation products can help in coping with the relatively sparse rain gauge ground networks of this area of the world. However, the complex topography and the marked geographic variability of precipitation in the region make precipitation retrieval from satellites problematic and product validation and intercomparison necessary. Six state-of-the-art monthly satellite precipitation products over East Africa during the 2001–09 time frame are evaluated. Eight areas (clusters) are identified by investigating the precipitation seasonality through the Global Precipitation Climatology Centre (GPCC) climatological gauge data. Seasonality was fully reproduced by satellite data in each of the GPCC-identified clusters. Not surprisingly, complex terrain (mountain regions in particular) represents a challenge for satellite precipitation estimates, as demonstrated by the standard deviations of the six-product ensemble. A further confirmation comes from the comparison between satellite estimates and rain gauge measurements as a function of terrain elevation. The 3B42 product performs best, although the satellite–gauge comparative analysis was not completely independent since a few of the products include a rain gauge bias correction.
The study of weather extremes is critical because of their great impact on the environment, economy and society. The identification of areas at greater risk of extreme conditions, and of meteorological situations that give rise to such conditions, enhances the understanding of climate risks and helps establish measures to reduce adverse impacts. In the current paper, precipitation extreme events (PEEs) in Spain between 1960 and 2011 were analysed. Thresholds for determining event severity were defined using 99th percentiles. First, regions of extreme weather risk were identified and then trends of extreme precipitation index were analysed using the Mann–Kendall test. To better understand atmospheric processes associated with extreme weather events in each season, synoptic‐scale fields of events exceeding the 99th percentile were analysed. By applying non‐hierarchical K‐means clustering, we defined six large‐scale atmospheric patterns that largely explain the spatiotemporal distribution of PEEs in the study area. PEEs on the western Iberian Peninsula mainly occurred with zonal flow, with a long Atlantic fetch generating moisture advection towards that area. On the eastern peninsula, the most important pattern for PEE production is characterized by a cutoff low at mid‐levels together with easterly moisture flow. The relationship of PEEs with teleconnection patterns, such as the North Atlantic Oscillation (NAO), Mediterranean Oscillation (MO) and Western Mediterranean Oscillation (WeMO), showed that nearly all the events over the southwestern peninsula were during the NAO‐ and MO‐negative phases. However, on the Mediterranean coast, the negative WeMO phase had greater influence. By contrast, the northwestern peninsula and eastern Cantabrian coast showed weaker relationships between these indices and PEEs. The results show a clear ability to identify regions exposed to extreme precipitation hazards. The correct identification of synoptic patterns associated with each type of weather extreme will assist the prediction of such events, thereby providing useful information for decision making and warning systems.
Daily time series from the Climate Prediction Center (CPC) Africa Rainfall Climatology version 2.0 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) and Tropical Applications of Meteorology using SATellite (TAMSAT) African Rainfall Climatology And Time series version 2 (TARCAT) high-resolution long-term satellite rainfall products are exploited to study the spatial and temporal variability of East Africa (EA, 5S-20N, 28-52E) rainfall between 1983 and 2015. Time series of selected rainfall indices from the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices are computed at yearly and seasonal scales. Rainfall climatology and spatial patterns of variability are extracted via the analysis of the total rainfall amount (PRCPTOT), the simple daily intensity (SDII), the number of precipitating days (R1), the number of consecutive dry and wet days (CDD and CWD), and the number of very heavy precipitating days (R20). Our results show that the spatial patterns of such trends depend on the selected rainfall product, as much as on the geographic areas characterized by statistically significant trends for a specific rainfall index. Nevertheless, indications of rainfall trends were extracted especially at the seasonal scale. Increasing trends were identified for the October-November-December PRCPTOT, R1, and SDII indices over eastern EA, with the exception of Kenya. In March-April-May, rainfall is decreasing over a large part of EA, as demonstrated by negative trends of PRCPTOT, R1, CWD, and R20, even if a complete convergence of all satellite products is not achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.