Numerous animal species currently experience habitat loss and fragmentation. This might result in behavioral and dietary adjustments, especially because fruit availability is frequently reduced in fragments. Food scarcity can result in elevated physiological stress levels, and chronic stress often has detrimental effects on individuals. Some animal species exhibit a high degree of fission–fusion dynamics, and theory predicts that these species reduce intragroup feeding competition by modifying their subgroup size according to resource availability. Until now, however, there have been few studies on how species with such fission–fission dynamics adjust their grouping patterns and social behavior in small fragments or on how food availability influences their stress levels. We collected data on fruit availability, feeding behavior, stress hormone levels (measured through fecal glucocorticoid metabolites (FGCM)), subgroup size, and aggression for two groups of brown spider monkeys (Ateles hybridus) in a small forest fragment in Colombia and examined whether fruit availability influences these variables. Contrary to our predictions, spider monkeys ranged in smaller subgroups, had higher FGCM levels and higher aggression rates when fruit availability was high compared to when it was low. The atypical grouping pattern of the study groups seems to be less effective at mitigating contest competition over food resources than more typical fission–fusion patterns. Overall, our findings illustrate that the relationship between resource availability, grouping patterns, aggression rates, and stress levels can be more complex than assumed thus far. Additional studies are needed to investigate the long-term consequences on the health and persistence of spider monkeys in fragmented habitats.
With their large body size and “slow” life histories, atelin primates are thought to follow a risk‐averse breeding strategy, similar to capital breeders, in which they accumulate energy reserves in anticipation of future reproductive events such as gestation and lactation. However, given the paucity of longitudinal data from wild populations, few studies to date have been able to compare the timing of reproductive events (e.g., copulations, conceptions, and births) in relation to shifting resource availability over multiple years. We examined the reproductive patterns of two atelin species—white‐bellied spider monkeys (Ateles belzebuth) and lowland woolly monkeys (Lagothrix lagotricha poeppigii)—in relation to habitat‐wide estimates of fruit availability at the Tiputini Biodiversity Station (TBS) in Amazonian Ecuador. Our sample included 4 years of data on births (N = 36) and copulations (N = 170) for Lagothrix, 10 years of data on births (N = 35) and copulations (N = 74) for Ateles, and 7 years of data on ripe fruit availability. Reproductive events were distinctly seasonal. For both species, births were concentrated between May and September, a time period in which ripe fruit was relatively scarce, while inferred conceptions occurred between September and January, when ripe fruit availability was increasing and maintained at high‐levels throughout the forest. Interannual variation in births was relatively stable, except for in 2016 when twice as many infants were born following a strong El Niño event that may have led to unusually high levels of fruit productivity during the 2015 breeding season. Although copulations were observed year‐round, an overwhelming majority (>90% for Lagothrix and >80% for Ateles) took place between August and February when females were most likely to conceive. Collectively, these data follow the reproductive patterns observed in other atelin primates, and, as proposed by others, suggest that atelins may follow a risk‐averse breeding strategy.
Interspecific aggression amongst nonhuman primates is rarely observed and has been mostly related to scenarios of resource competition. Interspecific infanticide is even rarer, and both the ultimate and proximate socio-ecological factors explaining this behavior are still unclear. We report two cases of interspecific infanticide and five cases of interspecific infant-directed aggression occurring in a well-habituated primate community living in a fragmented landscape in Colombia. All cases were initiated by male brown spider monkeys (Ateles hybridus) and were directed toward infants of either red howler monkeys (Alouatta seniculus: n = 6 cases) or white-fronted capuchins (Cebus albifrons: n = 1 case). One individual, a subadult spider monkey male, was involved in all but one case of interspecific infanticide or aggression. Other adult spider monkeys participated in interspecific aggression that did not escalate into potentially lethal encounters. We suggest that competition for food resources and space in a primate community living in high population densities and restricted to a forest fragment of ca. 65 ha might partly be driving the observed patterns of interspecific aggression. On the other hand, the fact that all but one case of interspecific infanticide and aggression involved the only subadult male spider monkey suggests this behavior might either be pathological or constitute a particular case of redirected aggression. Even if the underlying principles behind interspecific aggression and infanticide are poorly understood, they represent an important factor influencing the demographic trends of the primate community at this study site. Am. J. Primatol. 74:990–997, 2012. © 2012 Wiley Periodicals, Inc.
In tropical ecosystems, habitat degradation and fragmentation are some of the most important drivers of biodiversity loss. In Colombia, the Magdalena River basin is home to a megadiverse wildlife community, which has been historically exposed to pervasive habitat loss and fragmentation. Within a long‐term project on the conservation of critically endangered brown spider monkeys (Ateles hybridus), we signed conservation agreements with local landowners to protect the remaining forests and reconnect them through restoration corridors. We established 10 corridors within a matrix of pastures used for cattle‐ranching which reconnect approximately 1,000 ha of forests. We planted trees in 2016/2017 and 2020, established 24 vegetation plots (10 × 10 m) to measure their structure and composition, and compared them with six vegetation plots (50 × 2 m) in forest fragments. We installed camera traps to evaluate the effectiveness of corridors as potential pathways for terrestrial vertebrates in a fragmented landscape. Overall, forest structure differed between young corridors (1 year) and both older corridors (5 years) and forests; older corridors had no structural differences with forest fragments. Throughout this preliminary survey, 21 out of 32 species of vertebrates that have been recorded in forests used the corridors, including apex predators and other large birds and mammals. This study provides initial data supporting the use of corridors as a strategy to reconnect wildlife in isolated forest fragments in heavily fragmented landscapes, as well as the establishment of effective corridors that reconnect forest‐dwelling species in relatively short periods of time (<5 years).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.