We present a program visualization tool called Jeliot 3 that is designed to aid novice students to learn procedural and object oriented programming. The key feature of Jeliot is the fully or semi-automatic visualization of the data and control flows. The development process of Jeliot has been research-oriented, meaning that all the different versions have had their own research agenda rising from the design of the previous version and their empirical evaluations. In this process, the user interface and visualization has evolved to better suit the targeted audience, which in the case of Jeliot 3, is novice programmers. In this paper we explain the model for the system and introduce the features of the user interface and visualization engine. Moreover, we have developed an intermediate language that is used to decouple the interpretation of the program from its visualization. This has led to a modular design that permits both internal and external extensibility.
Many individual instructors -- and, in some cases, entire universities -- are gravitating towards the use of comprehensive learning management systems (LMSs), such as Blackboard and Moodle, for managing courses and enhancing student learning. As useful as LMSs are, they are short on features that meet certain needs specific to computer science education. On the other hand, computer science educators have developed--and continue to develop-computer-based software tools that aid in management, teaching, and/or learning in computer science courses. In this report we provide an overview of current CS specific on-line learning resources and guidance on how one might best go about extending an LMS to include such tools and resources. We refer to an LMS that is extended specifically for computer science education as a Computing Augmented Learning Management System, or CALMS. We also discuss sound pedagogical practices and some practical and technical principles for building a CALMS. However, we do not go into details of creating a plug-in for some specific LMS. Further, the report does not favor one LMS over another as the foundation for a CALMS.
As a report of a working group at ITiCSE 2006, this paper provides a vision of how visualizations and the software that generates them may be integrated into hypertextbooks and course management systems. This integration generates a unique synergy that we call a Visualization-based Computer Science Hypertextbook (VizCoSH). By borrowing features of both traditional hypertextbooks and course management systems, VizCoSHs become delivery platforms that address some of the reasons why visualizations have failed to find widespread use in education.The heart of the paper describes these features and explains, from both a student and teacher perspective, how each feature adds educational value to a visualization. In some cases, this value focuses on pedagogical issues, taking advantage of known strategies for making visualizations more engaging and effective. In other cases, the emphasis is on making it easier for teachers to use visualizations. A set of possible use scenarios and approaches for increasing interest in adopting a VizCoSH are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.