Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Drusen accumulation is the major pathological hallmark common to both dry and wet AMD. Although activation of the immune system has been implicated in disease progression, the pathways involved are unclear. Here we show that drusen isolated from donor AMD eyes activates the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, causing secretion of interleukin-1β (IL-1β) and IL-18. Drusen component C1Q also activates the NLRP3 inflammasome. Moreover, the oxidative-stress–related protein-modification carboxyethylpyrrole (CEP), a biomarker of AMD, primes the inflammasome. We found cleaved caspase-1 and NLRP3 in activated macrophages in the retinas of mice immunized with CEP-adducted mouse serum albumin, modeling a dry-AMD–like pathology. We show that laser-induced choroidal neovascularization (CNV), a mouse model of wet AMD, is exacerbated in Nlrp3−/− but not Il1r1−/− mice, directly implicating IL-18 in the regulation of CNV development. These findings indicate a protective role for NLRP3 and IL-18 in the progression of AMD.
Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.
SUMMARY The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses.
Alum is the principal vaccine adjuvant for clinical applications but it is a poor inducer of cellular immunity and is not an optimal adjuvant for vaccines where Th1 responses are required for protection. The mechanism underlying the inefficiency of alum in promoting Th1 responses is not fully understood. We show that aluminium hydroxide, aluminium phosphate, and calcium phosphate adjuvants inhibit the secretion of the Th1 polarizing cytokine, IL-12 by dendritic cells (DCs). Alum selectively inhibited DC expression of the IL-12p35 subunit and the inhibitory effect results from adjuvantinduced PI3 kinase signaling. To develop a more effective adjuvant for promoting cellmediated immunity, we investigated alternative particulates and found that in contrast to alum, the cationic polysaccharide chitosan did not inhibit IL-12 secretion. A combination of chitosan and the TLR9 agonist CpG activated the NLRP3 inflammasome and enhanced secretion of IL-12 and the other key Th1 and Th17-cell polarizing cytokines. When used as an adjuvant, CpG-chitosan induced NLRP3-dependent antigen-specific Th1 and Th17 responses. A combination of alum and CpG also enhanced Th1 and Th17 responses but was less effective than CpG-chitosan. Therefore, chitosan is an attractive alternative to alum in adjuvants for vaccines where potent cell-mediated immunity is required. Keywords IntroductionThere is a pressing need for novel vaccine adjuvants that are effective in safely promoting cellular immunity for diseases including Correspondence: Dr. Ed C. Lavelle e-mail: lavellee@tcd.ie tuberculosis (TB), malaria, and HIV [1]. Alum is the most widely used adjuvant for clinical applications and has been used in multiple vaccines for the past 80 years. However, while alum is a very effective adjuvant for promoting humoral immunity and Th2 type * These authors contributed equally to this work. The inefficiency of alum and related adjuvants as activators of Th1 responses suggests that additional signals are required for particulates to effectively promote cell-mediated immunity. Indeed, it has been shown that combining alum with IL-12 enhanced IgG2a antibody and Th1 responses to an HIV antigen compared with alum alone [19]. Combinations of emulsions, alum, or microparticles with PAMPs, particularly TLR4 agonists, are being used to amplify adaptive immunity [20][21][22] and are under active investigation for inclusion in a new generation of vaccines. To advance the development of this new generation of vaccine adjuvants with greater potency, it is essential to optimize both the particulate and immunostimulatory adjuvants to produce systems that act in synergy to drive appropriate T-cell responses. A recent report suggests that co-administration of CpG with alum results in a suppression of Th1-dependent antigen-specific IgG2a responses compared with administration of CpG alone [23]. We demonstrate that alum strongly inhibits the secretion of TLR agonistinduced IL-12 by DCs and these inhibitory effects are dependent on PI3 kinase signaling. In contrast to a...
In man, infection with South American Andes virus (ANDV) causes hantavirus cardiopulmonary syndrome (HCPS). HCPS due to ANDV is endemic in Southern Chile and much of Argentina and increasing numbers of cases are reported all over South America. A case-fatality rate of about 36% together with the absence of successful antiviral therapies urge the development of a vaccine. Although T-cell responses were shown to be critically involved in immunity to hantaviruses in mouse models, no data are available on the magnitude, specificity and longevity of ANDV-specific memory T-cell responses in patients. Using sets of overlapping peptides in IFN-γ ELISPOT assays, we herein show in 78 Chilean convalescent patients that Gn-derived epitopes were immunodominant as compared to those from the N- and Gc-proteins. Furthermore, while the relative contribution of the N-specific response significantly declined over time, Gn-specific responses remained readily detectable ex vivo up to 13 years after the acute infection. Tetramer analysis further showed that up to 16.8% of all circulating CD3+CD8+ T cells were specific for the single HLA-B*3501-restricted epitope Gn465–473 years after the acute infection. Remarkably, Gn465–473–specific cells readily secreted IFN-γ, granzyme B and TNF-α but not IL-2 upon stimulation and showed a ‘revertant’ CD45RA+CD27−CD28−CCR7−CD127− effector memory phenotype, thereby resembling a phenotype seen in other latent virus infections. Most intriguingly, titers of neutralizing antibodies increased over time in 10/17 individuals months to years after the acute infection and independently of whether they were residents of endemic areas or not. Thus, our data suggest intrinsic, latent antigenic stimulation of Gn-specific T-cells. However, it remains a major task for future studies to proof this hypothesis by determination of viral antigen in convalescent patients. Furthermore, it remains to be seen whether Gn-specific T cells are critical for viral control and protective immunity. If so, Gn-derived immunodominant epitopes could be of high value for future ANDV vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.