Applications ranging from algorithmic trading to scientific data analysis require realtime analytics based on views over databases that change at very high rates. Such views have to be kept fresh at low maintenance cost and latencies. At the same time, these views have to support classical SQL, rather than window semantics, to enable applications that combine current with aged or historical data.In this paper, we present viewlet transforms, a recursive finite differencing technique applied to queries. The viewlet transform materializes a query and a set of its higher-order deltas as views. These views support each other's incremental maintenance, leading to a reduced overall view maintenance cost. The viewlet transform of a query admits efficient evaluation, the elimination of certain expensive query operations, and aggressive parallelization. We develop viewlet transforms into a workable query execution technique, present a heuristic and cost-based optimization framework, and report on experiments with a prototype dynamic data management system that combines viewlet transforms with an optimizing compilation technique. The system supports tens of thousands of complete view refreshes a second for a wide range of queries.
Abstractcvc5 is the latest SMT solver in the cooperating validity checker series and builds on the successful code base of CVC4. This paper serves as a comprehensive system description of cvc5 ’s architectural design and highlights the major features and components introduced since CVC4 1.8. We evaluate cvc5 ’s performance on all benchmarks in SMT-LIB and provide a comparison against CVC4 and Z3.
We present CVC4SY, a syntax-guided synthesis (SyGuS) solver based on three bounded term enumeration strategies. The first encodes term enumeration as an extension of the quantifier-free theory of algebraic datatypes. The second is based on a highly optimized brute-force algorithm. The third combines elements of the others. Our implementation of the strategies within the satisfiability modulo theories (SMT) solver CVC4 and a heuristic to choose between them leads to significant improvements over state-of-the-art SyGuS solvers.
Modern static bug finding tools are complex. They typically consist of hundreds of thousands of lines of code, and most of them are wedded to one language (or even one compiler). This complexity makes the systems hard to understand, hard to debug, and hard to retarget to new languages, thereby dramatically limiting their scope. This paper reduces the complexity of the checking system by addressing a fundamental assumption, the assumption that checkers must depend on a full-blown language specification and compiler front end. Instead, our program checkers are based on drastically incomplete language grammars ("micro-grammars") that describe only portions of a language relevant to a checker. As a result, our implementation is tiny-roughly 2500 lines of code, about two orders of magnitude smaller than a typical system. We hope that this dramatic increase in simplicity will allow developers to use more checkers on more systems in more languages. We implement our approach in µchex, a language-agnostic framework for writing static bug checkers. We use it to build micro-grammar based checkers for six languages (C, the C preprocessor, C++, Java, JavaScript, and Dart) and find over 700 errors in real-world projects.
Floating-point computation exhibits significant runtime variation based on input parameters with some inputs executing over 100 times slower. The timing differences are so severe that attacks have successfully broken privacy guarantees of real systems (e.g. browsers). My thesis presents a defense against floating-point timing variability called CTFP-Constant-Time Floating-Point. The CTFP approach avoids all known fast and slow paths by surrounding every operation with special code that guarantees no dangerous inputs or outputs are observed. CTFP provides five constant-time implementations that trade-off between performance and correctness. Through these implementations, CTFP provides a principled method for defending against floating-point timing attacks. x
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.