The role of pathway-derived growth factors in the support of peripheral axon regeneration remains elusive. Few appropriate knock-out mice are available, and gene silencing techniques are rarely 100% effective. To overcome these difficulties, we have developed an in vitro organotypic co-culture system that accurately models peripheral nerve repair in the adult mammal. Spinal cord sections from P4 mice that express YFP in their neurons are used to innervate segments of P4 peripheral nerve. This reconstructed ventral root is then transected and joined to a nerve graft. Growth of axons across the nerve repair and into the graft can be imaged repeatedly with fluorescence microscopy to define regeneration speed, and parent neurons can be labeled in retrograde fashion to identify contributing neurons. Nerve graft harvested from adult mice remains viable in culture by both morphologic and functional criteria. Motoneurons are supported with GDNF for the first week in culture, after which they survive axotomy, and are thus functionally adult. This platform can be modified by using motoneurons from any genetically modified mouse that can be bred to express XFP, by harvesting nerve graft from any source, or by treating the culture systemically with antibodies, growth factors, or pathway inhibitors. The regeneration environment is controlled to a degree not possible in vivo, and the use of experimental animals is reduced substantially. The flexibility and control offered by this technique should thus make it a useful tool for the study of regeneration biology.
Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of pathway and end organ in the genesis of PMR in adult rats. Fresh and 2-week predegenerated femoral nerve grafts were transferred in correct or reversed alignment to replace the femoral nerves of previously unoperated Lewis rats. After 8 weeks of regeneration the motoneurons projecting through the grafts to recipient femoral cutaneous and muscle branches and their adjacent end organs were identified by retrograde labeling. Motoneuron counts were subjected to Poisson regression analysis to determine the relative roles of pathway and end organ identity in generating PMR. Transfer of fresh grafts did not result in PMR, whereas substantial PMR was observed when predegenerated grafts were used. Similarly, the pathway through which motoneurons reached muscle had a significant impact on PMR when grafts were predegenerated, but not when they were fresh. Comparison of the relative roles of pathway and end organ in generating PMR revealed that neither could be shown to be more important than the other. These experiments demonstrate unequivocally that adult muscle nerve and cutaneous nerve differ in qualities that can be detected by regenerating adult motoneurons and that can modify their subsequent behavior. They also reveal that two weeks of Wallerian degeneration modify the environment in the graft from one that provides no modality-specific cues for motorneurons to one that actively promotes PMR.
Functional testing has assumed a progressively dominant role in validating the success of experimental nerve repair. Results obtained in one model, however, cannot predict the results in others because they reflect the coordinated interaction of several muscles across multiple joints. As a result, many combinations of topographically correct and incorrect muscle reinnervation could produce the same result. We have developed a binary model in which elbow flexors and extensors are reinnervated, and elbow flexion and extension are the functions tested. The musculocutaneous and radial nerves of Lister-Hooded rats were subjected to axonotmetic injuries that produced increasing degrees of axonal misdirection at the site of injury ranging from simple crush to transection and rotational offset of proximal and distal stumps. Elbow function was tested with a device that requires coordinated elbow extension to reach sugar pellets and flexion to return them to the mouth. After 12 weeks of regeneration, motoneurons projecting to the distal musculocutaneous nerve were retrogradely labeled with WGA-Ruby and scored as to their location within musculocutaneous or radial motoneuron pools. The severity of axonal misdirection resulting from the initial surgery was mirrored by progressive degrees of inappropriate reinnervation of the musculocutaneous nerve by radial nerve axons. The specificity of reinnervation predicted elbow function (r= 0.72), whereas the number of motoneurons regenerationg did not. This model is thus well-suited to study the interaction of regeneration specificity and function across a single joint, and to produce data that can be generalized more broadly than that obtained from more complex models.
Background: Stabilization methods for distal tibiofibular syndesmotic injuries present risk of malreduction. We compared reduction accuracy and biomechanical properties of a new syndesmotic reduction and stabilization technique using 2 suture buttons placed through a sagittal tunnel in the fibula and across the tibia just proximal to the incisura with those of the conventional method. Methods: Syndesmotic injury was created in 18 fresh-frozen cadaveric lower leg specimens. Nine ankles were repaired with the conventional method and 9 with the new technique. Reduction for the conventional method was performed using thumb pressure under direct visualization and for the new method by tightening both suture buttons passed through the fibular and tibial tunnels. Computed tomography was used to assess reduction accuracy. Torsional resistance, fibular rotation, and fibular translation were evaluated during biomechanical testing. Results: The new technique showed less lateral translation of the fibula on CT measurements after reduction (0.06 ± 0.06 mm) than the conventional method (0.26 ± 0.31 mm), P = .02. The new technique produced less fibular rotation during internal rotation after 0 cycles (new –2.4 ± 1.4 degrees; conventional –5.0 ± 1.2 degrees, P = .001), 100 cycles (new –2.1 ± 1.9 degrees; conventional –4.6 ± 1.4 degrees, P = .01), and 500 cycles (new –2.2 ± 1.6 degrees; conventional –5.3 ± 2.5 degrees, P = .01) and during external rotation after 100 cycles (new 3.9 ± 3.3 degrees; conventional 5.9 ± 3.5 degrees, P = .02) and 500 cycles (new 3.3 ± 3.2 degrees; conventional 6.3 ± 2.6 degrees, P = .03). Fixation failed in 3 specimens. Conclusion: The new syndesmotic reduction and fixation technique resulted in more accurate reduction of the fibula in the tibial incisura in the coronal plane and better rotational stability compared with the conventional method. Clinical Relevance: This new technique of syndesmosis reduction and stabilization may be a reliable alternative to current methods.
Missing consent forms at surgery can lead to delays in patient care, provider frustration, and patient anxiety. We sought to assess the scope and magnitude of this problem at our institution. We surveyed key informants to determine the frequency and effect of missing consent forms. We found that 66% of patients were missing signed consent forms at surgery and that this caused a delay for 14% of operative cases. In many instances, the missing consent forms interfered with team rounds and resident educational activities. In addition, residents spent less time obtaining consent and were often uncomfortable obtaining consent for major procedures. Finally, 40% of faculty felt dissatisfied with resident consent forms, and more than two-thirds felt patients were uncomfortable with being asked for consent by residents. At our center, missing consent forms led to delayed cases, burdensome and inadequate consent by residents, and extra work for nursing staff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.