Unspecific peroxygenases (UPOs) constitute a new family of fungal heme-thiolate enzymes in which there is high biotechnological interest. Although several thousand genes encoding hypothetical UPO-type proteins have been identified in sequenced fungal genomes and other databases, only a few UPO enzymes have been experimentally characterized to date. Therefore, gene screening and heterologous expression from genetic databases are a priority in the search for ad hoc UPOs for oxyfunctionalization reactions of interest. Very recently, Escherichia coli production of a previously described basidiomycete UPO (as a soluble and active enzyme) has been reported. Here, we explored this convenient heterologous expression system to obtain the protein products from available putative UPO genes. In this way, two UPOs from the ascomycetes Collariella virescens (syn., Chaetomium virescens) and Daldinia caldariorum were successfully obtained, purified, and characterized. Comparison of their kinetic constants for oxidation of model substrates revealed 10- to 20-fold-higher catalytic efficiency of the latter enzyme in oxidizing simple aromatic compounds (such as veratryl alcohol, naphthalene, and benzyl alcohol). Homology molecular models of these enzymes showed three conserved and two differing residues in the distal side of the heme (the latter representing two different positions of a phenylalanine residue). Interestingly, replacement of the C. virescens UPO Phe88 by the homologous residue in the D. caldariorum UPO resulted in an F88L variant with 5- to 21-fold-higher efficiency in oxidizing these aromatic compounds. IMPORTANCE UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts.
Recently discovered fungal unspecific peroxygenases from Marasmius rotula and Chaetomium globosum catalyze the epoxidation of unsaturated fatty acids (FA) and FA methyl esters (FAME), unlike the well-known peroxygenases from Agrocybe aegerita and Coprinopsis cinerea. Reactions of a series of unsaturated FA and FAME with cis-configuration revealed high (up to 100 %) substrate conversion and selectivity towards epoxidation, although some significant differences were observed between enzymes and substrates with the best results being obtained with the C. globosum enzyme. This and the M. rotula peroxygenase appear as promising biocatalysts for the environmentally-friendly production of reactive FA epoxides given their self-sufficient monooxygenase activity and the high conversion rate and epoxidation selectivity.
A recently discovered peroxygenase from the fungus Marasmius rotula (MroUPO) is able to catalyze the progressive one‐carbon shortening of medium and long‐chain mono‐ and dicarboxylic acids by itself alone, in the presence of H2O2. The mechanism, analyzed using H2 18O2, starts with an α‐oxidation catalyzed by MroUPO generating an α‐hydroxy acid, which is further oxidized by the enzyme to a reactive α‐keto intermediate whose decarboxylation yields the one‐carbon shorter fatty acid. Compared with the previously characterized peroxygenase of Agrocybe aegerita, a wider heme access channel, enabling fatty acid positioning with the carboxylic end near the heme cofactor (as seen in one of the crystal structures available) could be at the origin of the unique ability of MroUPO shortening carboxylic acid chains.
A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of (18) O from the cosubstrate H2 (18) O2 , demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.