This paper presents a comprehensive analysis of the effect of the converter synchronizing methods on the contribution that Battery Energy Storage Systems (BESSs) can provide for the support of the inertial response of a power system. Solutions based on phase-locked loop (PLL) synchronization and virtual synchronous machine (VSM) synchronization without PLL are described and then compared by using time-domain simulations for an isolated microgrid (MG) case study. The simulation results showed that inertial response can be provided both with and without the use of a PLL. However, the behavior in the first moments of the inertia response differed. For the PLL-based solutions, the transient response was dominated by the low-level current controllers, which imposed fast under-damped oscillations, while the VSM systems presented a slower response resulting in a higher amount of energy exchanged and therefore a greater contribution to the support of the system inertial response. Moreover, it was demonstrated that PLL-based solutions with and without derivative components presented similar behavior, which significantly simplified the implementation of the PLL-based inertia emulation solutions. Finally, results showed that the contribution of the BESS using VSM solutions was limited by the effect of the VSM-emulated inertia parameters on the system stability, which reduced the emulated inertia margin compared to the PLL-based solutions.
There is a growing interest in the parallel operation of Voltage Source Converters (VSCs) both in an isolated microgrid or connected to the utility grid. The most common solution in the literature for the paralellization of VSCs is the socalled droop control, which brings about a relationship between active power and frequency. In this paper, a different approach is proposed where reactive power is used instead of active power to ensure synchronous operation. Active and reactive power are independently controlled using a dq-frame representation based on the vector oriented control, which inherently provides current limitation capability. A detailed dynamic model of the system is used to demonstrate the relation between reactive power and frequency. Due to the intrinsic synchronizing mechanism, the proposed scheme can operate in both isolated and gridconnected modes. As opposed to droop control schemes, active power is not used for synchronization and thus synchronization is possible even if active power is not controllable. Simulation and experimental results, for a case study where a VSC is connected to a host grid, are presented to validate the proposal.
A naive battery operation optimization attempts to maximize short-term profits. However, it has been shown that this approach does not optimize long-term profitability, as it neglects battery degradation. Since a battery can perform a limited number of cycles during its lifetime, it may be better to operate the battery only when profits are on the high side. Researchers have dealt with this issue using various strategies to restrain battery usage, reducing short-term benefits in exchange for an increase in long-term profits. Determining this operation restraint is a topic scarcely developed in the literature. It is common to arbitrarily quantify degradation impact into short-term operation, which has proven to have an extensive impact on long-term results. This paper carries out a critical review of different methods of degradation control for short-time operation. A classification of different practices found in the literature is presented. Strengths and weaknesses of each approach are pointed out, and future possible contributions to this topic are remarked upon. The most common methodology is implemented in a simulation for demonstration purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.