Background: Caffeine ingestion improves athletic performance, but impairs sleep quality. We aimed to analyze the effect of caffeine intake on 800-m running performance, sleep quality (SQ), and nocturnal cardiac autonomic activity (CAA) in trained runners. Methods: Fifteen male middle-distance runners participated in the study (aged 23.7 ± 8.2 years). In a randomized and comparative crossover study design, the athletes ingested a placebo (PL) or caffeine supplement (CAF; 6 mg∙kg−1) one hour before an 800-m running time-trial test in the evening. During the night, CAA and SQ were assessed using actigraphy and a sleep questionnaire. A second 800-m running test was performed 24 h after the first. Time, heart rate, rating of perceived exertion, and blood lactate concentration were analyzed for each running test. Results: No significant differences in CAA and performance variables were found between the two conditions. However, CAF impaired sleep efficiency (p = 0.003), actual wake time (p = 0.001), and the number of awakenings (p = 0.005), as measured by actigraphy. Also, CAF impaired the questionnaire variables of SQ (p = 0.005), calm sleep (p = 0.005), ease of falling asleep (p = 0.003), and feeling refreshed after waking (p = 0.006). Conclusion: The supplementation with caffeine (6 mg∙kg−1) did not improve the 800-m running performance, but did impair the SQ of trained runners.
The aim of this study was to compare the effects of two different intensity distribution training programmes (polarized (POL) and threshold (THR)) on aerobic performance, strength and body composition variables in ultra-endurance runners. Twenty recreationally trained athletes were allocated to
Purpose: To compare the effects of 2 different intensity distribution training programs (threshold [THR] and polarized [POL]) on fat metabolism and neuromuscular variables. Methods: Twenty ultrarunners were allocated to POL (n = 11; age 40.6 [9.7] y, weight 73.5 [10.8] kg, VO2max 55.8 [4.9] mL·kg−1·min−1) or THR group (n = 9; age 36.8 [9.2] y, weight 75.5 [10.4] kg, VO2max 57.1 [5.2] mL·kg−1·min−1) and performed a 12-week training program that consisted of 5 running sessions, 2 strength sessions, and 1 day of full rest per week. Both groups performed similar total training duration and load but with different intensity distribution during running sessions. Resting metabolic rate, fat metabolism, isometric rate of force development (RFD; N·s−1) and maximal voluntary contraction in the knee extensor, and electromyographic amplitude were measured before and after each program. Results: A significant decrease in RFD0–100 ms (Δ −13.4%; P ≤ .001; effect size [ES] = 1.00), RFD0–200 ms (Δ −11.7%; P ≤ .001; ES = 1.4), and RFDpeak (Δ −18%; P ≤ .001; ES = 1.4) were observed in the POL group. In THR group, a significant increase in mean electromyographic amplitude (Δ 24.4%; P = .02; ES = 1.4) was observed. There were no significant differences between groups in any of the variables. Conclusions: Similar adaptations in fat metabolism and neuromuscular performance can be achieved after 12 weeks of POL or THR intensity distribution. However, THR distribution appears to better maintain strength (RFD) and improve mean electromyographic amplitude. Nevertheless, the combination of both running and maximum strength training could influence on results because of the residual fatigue thus inducing suboptimal adaptations in the POL group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.