Colletotrichum gloeosporioides is the common causal agent of anthracnose in papaya (Carica papaya L.) fruits, and infection by this fungal pathogen results in severe post-harvest losses. In the Yucatán peninsula (Mexico) a different Colletotrichum species was isolated from papaya fruits with atypical anthracnose lesions. The DNAs from a variety of Colletotrichum isolates producing typical and atypical lesions, respectively, were amplified by PCR with C.gloeosporioides-specific primers. All isolates from typical anthracnose lesions yielded a 450 bp PCR product, but DNAs from isolates with atypical lesions failed to produce an amplification product. For further characterization, the rDNA 5.8S-ITS region was amplified by PCR and processed for sequencing and RFLP analysis, respectively, to verify the identity of the papaya anthracnose pathogens. The results revealed unequivocally the existence of two Colletotrichum species causing anthracnose lesions on papaya fruits: C. gloeosporioides and C. capsici. PCR-RFLP using the restriction endonuclease MspI reliably reproduced restriction patterns specific for C. capsici or C. gloeosporioides. The generation of RFLP patterns by MspI (or AluI or RsaI) is a rapid, accurate, and unequivocal method for the detection and differentiation of these two Colletotrichum species.
Colletotrichum capsici is an important fungal species that causes anthracnose in many genera of plants causing severe economic losses worldwide. A primer set was designed based on the sequences of the ribosomal internal transcribed spacer (ITS1 and ITS2) regions for use in a conventional PCR assay. The primer set (CcapF/CcapR) amplified a single product of 394 bp with DNA extracted from 20 Mexican isolates of C. capsici. The specificity of primers was confirmed by the absence of amplified product with DNA of four other Colletotrichum species and eleven different fungal genera. This primer set is capable of amplifying only C. capsici from different contaminated tissues or fungal structures, thereby facilitating rapid diagnoses as there is no need to isolate and cultivate the fungus in order to identify it. The sensitivity of detection with this PCR method was 10 pg of genomic DNA from the pathogen. This is the first report of a C. capsici-specific primer set. It allows rapid pathogen detection and provides growers with a powerful tool for a rational selection of fungicides to control anthracnose in different crops and in the post-harvest stage.
Looking for a biotechnical potential, aqueous extracts of leaves of 12 native species used in the Mayan traditional medicine of the coastal dune and mangrove of Yucatan (Mexico) were selected to evaluate their biological activities. Rhizophora mangle and Manilkara zapota showed the highest free radical scavenging activity (3.94 ± 0.19 and 6.42 ± 0.32 μg/mL, respectively), and the highest antihypertensive activity was obtained from Solanum donianum (0.38 μg/mL). The anti-hyperglycemic activity of these species was also tested; the highest activities were registered with R . mangle . The antimicrobial activity of Malvaviscus arboreus , S . donianum , M . zapota , and R . mangle at 10% (w/v) was positive against six human pathogenic bacteria and Bonellia macrocarpa against one pathogenic fungus. Solanum donianum , M . zapota , B . macrocarpa , and R . mangle were positive against two pathogenic plant fungi. These results show that the aqueous extracts of five native plants of the Yucatan coast have potential as antioxidants, ACE inhibitors, α-amylase and α-glucosidase inhibitors, and as antimicrobials, which make their exploration for utilization in the agricultural and pharmaceutical industries a possibility.
Papaya meleira virus (PMeV), causal agent of meleira or sticky disease, is a double-stranded RNA (dsRNA) virus which has been previously reported only in Brazil. A study was carried out in order to verify the presence and occurrence of PMeV in Mexico. Latex samples from symptomatic and asymptomatic papaya fruits were collected in Quintana Roo state papaya orchards, where the first symptoms of PMeV were observed, and from 29 different municipalities located in ten papaya producer states in Mexico. A molecular protocol based on nucleic acid extraction was used for the diagnosis and a virus 12 Kb dsRNA distinctive band was observed in all PMeV infected plants. Around 46% of the evaluated plants were positive for this pathogen. Presence of the virus had been confirmed in seven states indicating the potential damage that PMeV could cause in the papaya crop in Mexico. The molecular analysis used allowed the diagnosis of infected plants without symptoms and facilitated the diagnosis in flowers and small papaya fruits also. The early diagnosis of PMeV will allow papaya producers to take appropriate and timely control measures. This is the first report of Papaya meleira virus in Mexico.
Genetic studies and pathogen detection in plants using molecular methods require the isolation of DNA from a large number of samples in a short time span. A rapid and versatile protocol for extracting high-quality DNA from different plant species is described. This method yields from 1 to 2 mg of DNA per gram of tissue. The absorbance ratios (A260/A280) obtained ranged from 1.6 to 2.0. A minimal presence of contaminating metabolites (as polymerase chain reaction [PCR] inhibitors) in samples and a considerable savings in reagents are characteristics of this protocol, as well as the low cost of the analysis per sample. The quality of the DNA was suitable for PCR amplification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.