Modeling student learning and further predicting the performance is a well-established task in online learning and is crucial to personalized education by recommending different learning resources to different students based on their needs. Interactive online question pools (e.g., educational game platforms), an important component of online education, have become increasingly popular in recent years. However, most existing work on student performance prediction targets at online learning platforms with a well-structured curriculum, predefined question order and accurate knowledge tags provided by domain experts. It remains unclear how to conduct student performance prediction in interactive online question pools without such well-organized question orders or knowledge tags by experts. In this paper, we propose a novel approach to boost student performance prediction in interactive online question pools by further considering student interaction features and the similarity between questions. Specifically, we introduce new features (e.g., think time, first attempt, and first drag-and-drop) based on student mouse movement trajectories to delineate students' problem-solving details. In addition, heterogeneous information network is applied to integrating students' historical problem-solving information on similar questions, enhancing student performance predictions on a new question. We evaluate the proposed approach on the dataset from a real-world interactive question pool using four typical machine learning models. The result shows that our approach can achieve a much higher accuracy for student performance prediction in interactive online question pools than the traditional way of only using the statistical features (e.g., students' historical question scores) in various models. We further discuss the performance consistency of our approach across different prediction models and question classes, as well as the importance of the proposed interaction features in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.