In this work we report a computational study about the aza-SNAr mechanism in fluorine- and chlorine-containing azines with the aim to unravel the physical factors that determine the reactivity patterns in these heterocycles towards propylamine.
An alchemical transformation is any process, physical or fictitious, that connects two points in the chemical space. A particularly important transformation is the vanishing of a proton, whose energy can be linked to the proton dissociation enthalpy of acids. In this work we assess the reliability of alchemical derivatives in predicting the proton dissociation enthalpy of a diverse series of mono-and polyprotic molecules. Alchemical derivatives perform remarkably well in ranking the proton affinity of all molecules. Additionally, alchemical derivatives could be use also as a predictive tool because their predictions correlate quite well with calculations based on energy differences and experimental values. Although second-order alchemical derivatives underestimate the dissociation enthalpy, the deviation seems to be almost constant. This makes alchemical derivatives extremely accurate to evaluate the difference in proton affinity between two acid sites of polyprotic molecule. Finally, we show that the reason for the underestimation of the dissociation enthalpy is most likely the contribution of higher-order derivatives.
Atoms under pressure undergo a number of modifications of their electronic structure. Good examples are the spontaneous ionization, stabilization of excited‐state configurations, and contraction of atomic‐shells. In this work, we study the effects of confinement with harmonic potentials on the electronic structure of atoms from H to Ne. Dynamic and static correlation is taken into account with coupled cluster with single and double excitations and CASSCF calculations. Because the strength of harmonic confinement cannot be translated into pressure, we envisioned a “calibration” method to transform confinement into pressure. We focused on the effect of confinement on: (a) changes of electron distribution and localization within the K and L shells, (b) confinement‐induced ionization pressure, (c) level crossing of electronic states, and (d) correlation energy. We found that contraction of valence and core‐shells are not negligible and that the use of standard pseudopotentials might be not adequate to study solids under extreme pressures. The critical pressure at which atoms ionize follows a periodic trend, and it ranges from 28 GPa for Li to 10.8 TPa for Ne. In Li and Be, pressure induces mixing of the ground state configuration with excited states. At high pressure, the ground states of Li and Be become a doublet and a triplet with configurations 1s22p and 1s22s2p, respectively, which could change the chemistry of Be. Finally, it is observed that atoms with fewer electrons correlation increases, but for atoms with more electrons, the increasing of kinetic energy dominates over electron correlation.
The electronegativity concept was first formulated by Pauling in the first half of the 20th century to explain quantitatively the properties of chemical bonds between different types of atoms. Today, it is widely known that, in high-pressure regimes, the reactivity properties of atoms can change, and, thus, the bond patterns in molecules and solids are affected. In this work, we studied the effects of high pressure modeled by a confining potential on different definitions of electronegativity and, additionally, tested the accuracy of first-order perturbation theory in the context of density functional theory for confined atoms of the second row at the Hartree–Fock level. As expected, the electronegativity of atoms at high confinement is very different than that of their free counterparts since it depends on the electronic configuration of the atom, and, thus, its periodicity is modified at higher pressures.
Using perturbation theory within the framework of conceptual density functional theory, we derive a lower bound for the lattice energy of the ionic solids. The main element of the lower bound is the Fukui potential in the nuclei of the molecule corresponding to the unit formula of the solid. Thus, we propose a model to calculate the lattice energy in terms of the Fukui potential. Our method, which is extremely simple, performs well as other methods using the crystal structure information of alkali halide solids. The method proposed here correlates surprisingly well with the experimental data on the lattice energy of a diverse series of solids having even a non-negligible covalent characteristic. Finally, the validity of the maximum hardness principle (MHP) is assessed, showing that in this case, the MHP is limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.