Carbamazepine is an antiepileptic and mood-stabilizing drug which is used widely in Europe and North America. In the environment, it is found as a persistent and recalcitrant contaminant, being one of the most prominent hazardous pharmaceuticals and personal care products in effluents of wastewater treatment plants. Phragmites australis is one of the species with both, the highest potential of detoxification and phytoremediation. It has been used successfully in the treatment of industrial and municipal wastewater. Recently, the identification of endophytic microorganisms from different plant species growing in contaminated sites has provided a list of candidates which could be used as bio-inoculants for bioremediation of difficult compounds. In this study, Phragmites australis plants were exposed to 5 mg/L of carbamazepine. After 9 days the plants had removed 90% of the initial concentration. Endophytic bacteria were isolated from these plants and further characterized. Phylogenetic analysis based on 16S rDNA sequencing revealed that the majority of these isolates belong to three groups: Proteobacteria, Actinobacteria, and Bacteroidetes. Carbamazepine uptake and plant growth promoting (PGP) traits were analyzed among the isolates. Ninety percent of the isolates produce indole acetic acid (IAA) and all of them possess at least one of the PGP traits tested. One isolate identified as Chryseobacterium taeanense combines good carbamazepine uptake and all of the PGP traits. Rhizobium daejeonense can remove carbamazepine and produces 23 μg/mL of IAA. Diaphorobacter nitroreducens and Achromobacter mucicolens are suitable for carbamazepine removal while both, Pseudomonas veronii and Pseudomonas lini show high siderophore production and phosphate solubilization. Alone or in combination, these isolates might be applied as inoculates in constructed wetlands in order to enhance the phytoremediation of carbamazepine during wastewater treatment.
Carbamazepine (CBZ) is a pharmaceutical frequently categorized as a recalcitrant pollutant in the aquatic environment. Endophytic bacteria previously isolated from reed plants have shown the ability to promote growth of their host and to contribute to CBZ metabolism. In this work, a horseradish (Armoracia rusticana) hairy root (HR) culture has been used as a plant model to study the interactions between roots and endophytic bacteria in response to CBZ exposure. HRs could remove up to 5% of the initial CBZ concentration when they were grown in spiked Murashige and Skoog (MS) medium. Higher removal rates were observed when HRs were inoculated with the endophytic bacteria Rhizobium radiobacter (21%) and Diaphorobacter nitroreducens (10%). Transformation products resulting from CBZ degradation were identified using liquid chromatography-ultra high-resolution quadrupole time of flight mass spectrometry (LC-UHR-QTOF-MS). CBZ metabolism could be divided in four pathways. Metabolites involving GSH conjugation and 2,3-dihydroxylation, as well as acridine related compounds are described in plants for the first time. This study presents strong evidence that xenobiotic metabolism and degradation pathways in plants can be modulated by the interaction with their endophytic community. Hence it points to plausible applications for the elimination of recalcitrant compounds such as CBZ from wastewater in CWs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.