Background Faecal immunochemical tests (FITs) are used to triage primary care patients with symptoms that could be caused by colorectal cancer for referral to colonoscopy. The aim of this study was to determine whether combining FIT with routine blood test results could improve the performance of FIT in the primary care setting. Methods Results of all consecutive FITs requested by primary care providers between March 2017 and December 2020 were retrieved from the Oxford University Hospitals NHS Foundation Trust. Demographic factors (age, sex), reason for referral, and results of blood tests within 90 days were also retrieved. Patients were followed up for incident colorectal cancer in linked hospital records. The sensitivity, specificity, positive and negative predictive values of FIT alone, FIT paired with blood test results, and several multivariable FIT models, were compared. Results One hundred thirty-nine colorectal cancers were diagnosed (0.8%). Sensitivity and specificity of FIT alone at a threshold of 10 μg Hb/g were 92.1 and 91.5% respectively. Compared to FIT alone, blood test results did not improve the performance of FIT. Pairing blood test results with FIT increased specificity but decreased sensitivity. Multivariable models including blood tests performed similarly to FIT alone. Conclusions FIT is a highly sensitive tool for identifying higher risk individuals presenting to primary care with lower risk symptoms. Combining blood test results with FIT does not appear to lead to better discrimination for colorectal cancer than using FIT alone.
Objective: Faecal immunochemical tests (FITs) are used to triage primary care patients with low risk colorectal cancer symptoms for referral to colonoscopy. The aim of this study was to determine whether combining FIT with routine blood test results could improve the performance of FIT in the primary care setting. Design: Results of all consecutive FITs requested by primary care providers between March 2017 and December 2020 were retrieved from the Oxford University Hospital Trust. Demographic factors (age, sex), reason for referral, and results of blood tests within 90 days were also retrieved. Patients were followed up for incident colorectal cancer in linked hospital records. The sensitivity, specificity, positive and negative predictive values of FIT alone, FIT paired with blood test results, and several multivariable FIT models, were compared. Results: Among 16,604 eligible patients, 139 colorectal cancers were diagnosed (0.8%). Sensitivity and specificity of FIT alone at a threshold of 10 μg Hb/g were 92.1% and 91.5% respectively. Compared to FIT alone, blood test results did not improve the performance of FIT. Pairing blood test abnormalities with FIT reduced the number of abnormal results needed to detect one cancer but increased the number of cancers missed. Multivariable models retaining FIT, sex, and mean cell volume performed similarly to FIT alone. Conclusion: FIT is a highly sensitive tool for identifying higher risk individuals presenting to primary care with lower risk symptoms. Combining blood test results with FIT does not appear to lead to better discrimination for colorectal cancer than using FIT alone.
ObjectiveColorectal cancer is a common cause of death and morbidity. A significant amount of data are routinely collected during patient treatment, but they are not generally available for research. The National Institute for Health Research Health Informatics Collaborative in the UK is developing infrastructure to enable routinely collected data to be used for collaborative, cross-centre research. This paper presents an overview of the process for collating colorectal cancer data and explores the potential of using this data source.MethodsClinical data were collected from three pilot Trusts, standardised and collated. Not all data were collected in a readily extractable format for research. Natural language processing (NLP) was used to extract relevant information from pseudonymised imaging and histopathology reports. Combining data from many sources allowed reconstruction of longitudinal histories for each patient that could be presented graphically.ResultsThree pilot Trusts submitted data, covering 12 903 patients with a diagnosis of colorectal cancer since 2012, with NLP implemented for 4150 patients. Timelines showing individual patient longitudinal history can be grouped into common treatment patterns, visually presenting clusters and outliers for analysis. Difficulties and gaps in data sources have been identified and addressed.DiscussionAlgorithms for analysing routinely collected data from a wide range of sites and sources have been developed and refined to provide a rich data set that will be used to better understand the natural history, treatment variation and optimal management of colorectal cancer.ConclusionThe data set has great potential to facilitate research into colorectal cancer.
Background Simple blood tests can play an important role in identifying patients for cancer investigation. The current evidence base is limited almost entirely to tests used in isolation. However, recent evidence suggests combining multiple types of blood tests and investigating trends in blood test results over time could be more useful to select patients for further cancer investigation. Such trends could increase cancer yield and reduce unnecessary referrals. We aim to explore whether trends in blood test results are more useful than symptoms or single blood test results in selecting primary care patients for cancer investigation. We aim to develop clinical prediction models that incorporate trends in blood tests to identify the risk of cancer. Methods Primary care electronic health record data from the English Clinical Practice Research Datalink Aurum primary care database will be accessed and linked to cancer registrations and secondary care datasets. Using a cohort study design, we will describe patterns in blood testing (aim 1) and explore associations between covariates and trends in blood tests with cancer using mixed-effects, Cox, and dynamic models (aim 2). To build the predictive models for the risk of cancer, we will use dynamic risk modelling (such as multivariate joint modelling) and machine learning, incorporating simultaneous trends in multiple blood tests, together with other covariates (aim 3). Model performance will be assessed using various performance measures, including c-statistic and calibration plots. Discussion These models will form decision rules to help general practitioners find patients who need a referral for further investigation of cancer. This could increase cancer yield, reduce unnecessary referrals, and give more patients the opportunity for treatment and improved outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.