One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.
Sewer asset management gained momentum and importance in recent years due to economic considerations, since infrastructure maintenance and rehabilitation directly represent major investments. Because physical urban water infrastructure has life expectancies of up to 100 years or more, contemporary urban drainage systems are strongly influenced by historical decisions and implementations. The current decisions taken in sewer asset management will, therefore, have a long-lasting impact on the functionality and quality of future services provided by these networks. These decisions can be supported by different approaches ranging from various inspection techniques, deterioration models to assess the probability of failure or the technical service life, to sophisticated decision support systems crossing boundaries to other urban infrastructure. This paper presents the state of the art in sewer asset management in its manifold facets spanning a wide field of research and highlights existing research gaps while giving an outlook on future developments and research areas.
The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.
Recent UV-visible spectrometers deliver on line and in situ absorbance spectra in wastewater or stormwater transported in urban drainage systems. After calibration with local data sets, spectra can be used to estimate pollutant concentrations. Calibration methods are usually based on PLS (Partial Least Squares) regression. Their most important difficulty lies in the identification of the number of both i) the latent vectors and ii) the independent variables. A method is proposed to identify these variables, based on an exhaustive tests procedure (Jackknife cross validation and matrix of prediction indicator). It was applied to estimate TSS (total suspended solids) or COD (chemical oxygen demand) concentrations at the inlet of a storage-settling tank in a stormwater separate sewer system, and compared to three other calibration methods used either for turbidity meters or UV-visible spectrometers. With the available calibration data set: i) the spectrometer gives results with better prediction quality than the turbidity meter, ii) for the spectrometer, local calibration gives better results than global calibration, iii) the proposed PLS method gives results with a similar order of magnitude in uncertainties as the manufacturer local calibration method, but is more open and transparent for the user. Similar results were obtained for a second data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.