We prove that given a measure preserving system (X, B, µ, T 1 ,. .. , T d) with commuting, ergodic transformations T i such that T i T −1 j are ergodic for all i = j, the multicorrelation sequence a(n) = X f 0 •T n 1 f 1 •.. .•T n d f d dµ can be decomposed as a(n) = ast(n) + aer(n), where ast is a uniform limit of d-step nilsequences and aer is a nullsequence (that is, lim N −M →∞
A recent result of Frantzikinakis in [Fra3] establishes sufficient conditions for joint ergodicity in the setting of Z-actions. We generalize this result for actions of secondcountable locally compact abelian groups. As an application, we show that, given an ergodic action (T n ) n∈F of a countable field F with characteristic zero on a probability space (X, B, µ) and a family {p 1 , . . . , p k } of F -linearly independent essentially distinct polynomials, we havewhere f i ∈ L ∞ (µ), (Φ N ) is a Følner sequence of (F, +), and the convergence takes place in L 2 (µ). We also obtain corollaries in combinatorics and topological dynamics.
<p style='text-indent:20px;'>A recent result of Frantzikinakis in [<xref ref-type="bibr" rid="b17">17</xref>] establishes sufficient conditions for joint ergodicity in the setting of <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z} $\end{document}</tex-math></inline-formula>-actions. We generalize this result for actions of second-countable locally compact abelian groups. We obtain two applications of this result. First, we show that, given an ergodic action <inline-formula><tex-math id="M2">\begin{document}$ (T_n)_{n \in F} $\end{document}</tex-math></inline-formula> of a countable field <inline-formula><tex-math id="M3">\begin{document}$ F $\end{document}</tex-math></inline-formula> with characteristic zero on a probability space <inline-formula><tex-math id="M4">\begin{document}$ (X,\mathcal{B},\mu) $\end{document}</tex-math></inline-formula> and a family <inline-formula><tex-math id="M5">\begin{document}$ \{p_1,\dots,p_k\} $\end{document}</tex-math></inline-formula> of independent polynomials, we have</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \lim\limits_{N \to \infty} \frac{1}{|\Phi_N|}\sum\limits_{n \in \Phi_N} T_{p_1(n)}f_1\cdots T_{p_k(n)}f_k\ = \ \prod\limits_{j = 1}^k \int_X f_i \ d\mu, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M6">\begin{document}$ f_i \in L^{\infty}(\mu) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ (\Phi_N) $\end{document}</tex-math></inline-formula> is a Følner sequence of <inline-formula><tex-math id="M8">\begin{document}$ (F,+) $\end{document}</tex-math></inline-formula>, and the convergence takes place in <inline-formula><tex-math id="M9">\begin{document}$ L^2(\mu) $\end{document}</tex-math></inline-formula>. This yields corollaries in combinatorics and topological dynamics. Second, we prove that a similar result holds for totally ergodic actions of suitable rings.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.