Realistic in vitro models are critical in the drug development process. In this study, a novel in vitro platform is employed to assess drug penetration and metabolism. This platform, which utilizes a 3D printed fluidic device, allows for dynamic dosing of three dimensional cell cultures, also known as spheroids. The penetration of the chemotherapeutic irinotecan into HCT 116 colon cancer spheroids was examined with matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). The active metabolite of irinotecan, SN-38, was also detected. After twenty-four hours of treatment, SN-38 was concentrated to the outside of the spheroid, a region of actively dividing cells. The irinotecan prodrug localization contrasted with SN-38 and was concentrated to the necrotic core of the spheroids, a region containing mostly dead and dying cells. These results demonstrate that this unique in vitro platform is an effective means to assess drug penetration and metabolism in three dimensional cell cultures. This innovative system can have a transformative impact on the preclinical evaluation of drug candidates due to its cost effectiveness and high throughput.
Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ~3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system’s requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn2+ and human serum albumin (Kd = (5.62 ± 0.93) × 10−7 M) under physiological conditions that is statistically equal to the constants reported in the literature.
Antibiotic susceptibility testing is often performed to determine the most effective antibiotic treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is becoming drug resistant. Such tests, and others used to determine efficacy of candidate antibiotics during the drug discovery process, have resulted in a demand for more rapid susceptibility testing methods. Here, we have developed a susceptibility test that utilizes chemiluminescent determination of ATP release from bacteria and the overall optical density (OD600) of the bacterial solution. Bacteria release ATP during a growth phase or when they are lysed in the presence of an effective antibiotic. Because optical density increases during growth phase, but does not change during bacterial lysing, an increase in the ATP:optical density ratio after the bacteria have reached the log phase of growth (which is steady) would indicate antibiotic efficacy. Specifically, after allowing a kanamycin-resistant strain of Escherichia coli (E.coli) to pass through the growth phase and reach steady state, the addition of levofloxacin, an antibiotic to which E. coli is susceptible, resulted in a significant increase in the ATP:OD600 ratio in comparison to the use of kanamycin alone (1.80 +/- 0.50 vs. 1.12 +/- 0.28). This difference could be measured 20 minutes after the addition of the antibiotic, to which the bacteria are susceptible, to the bacterial sample. Furthermore, this method also proved useful with gram positive bacteria, as the addition of kanamycin to a chloramphenicol-resistant strain of Bacillus subtilis (B. subtilis) resulted in an ATP:OD600 ratio of 2.14 +/- 0.26 in comparison to 0.62 +/- 0.05 for bacteria not subjected to the antibiotic to which the bacteria are susceptible. Collectively, these results suggest that measurement of the ATP:OD600 ratio may provide a susceptibility test for antibiotic efficacy that is more rapid and quantitative than currently accepted techniques.
The creation of a pharmacokinetic (PK) curve, which follows the plasma concentration of an administered drug as a function of time, is a critical aspect of the drug development process and includes such information as the drug's bioavailability, clearance, and elimination half-life. Prior to a drug of interest gaining clearance for use in human clinical trials, research is performed during the preclinical stages to establish drug safety and dosing metrics from data obtained from the PK studies. Both in vivo animal models and in vitro platforms have limitations in predicting human reaction to a drug due to differences in species and associated simplifications, respectively. As a result, in silico experiments using computer simulation have been implemented to accurately predict PK parameters in human studies. This review assesses these three approaches (in vitro, in vivo, and in silico) when establishing PK parameters and evaluates the potential for in silico studies to be the future gold standard of PK preclinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.