Parkinson's disease (PD), a common neurodegenerative disorder, results from the loss of motor function when dopaminergic neurons (DNs) in the brain selectively degenerate. While pluripotent stem cells (PSCs) show promise for generating replacement neurons, current protocols for generating terminally differentiated DNs require a complicated cocktail of factors. Recent work demonstrated that a naturally occurring steroid called guggulsterone effectively differentiated PSCs into DNs, simplifying this process. In this study, we encapsulated guggulsterone into novel poly-ε-caprolactone-based microspheres and characterized its release profile over 44 d in vitro, demonstrating we can control its release over time. These guggulsterone-releasing microspheres were also successfully incorporated in human induced pluripotent stem cell-derived cellular aggregates under feeder-free and xeno-free conditions and cultured for 20 d to determine their effect on differentiation. All cultures stained positive for the early neuronal marker TUJ1 and guggulsterone microsphere-incorporated aggregates did not adversely affect neurite length and branching. Guggulsterone microsphere incorporated aggregates exhibited the highest levels of TUJ1 expression as well as high Olig 2 expression, an inhibitor of the STAT3 astrogenesis pathway previously known as a target for guggulsterone in cancer treatment. Together, this study represents an important first step towards engineered neural tissues consisting of guggulsterone microspheres and PSCs for generating DNs that could eventually be evaluated in a pre-clinical model of PD.
Pluripotent stem cells (PSCs) can form any specialized cell type found in the body making them an excellent tool for regenerative medicine applications. Directed differentiation of PSCs into specific phenotypes can be accomplished by introducing specific chemical cues such as the small molecule retinoic acid (RA). Expressed in the developing nervous system, RA can induce differentiation of PSCs into neural phenotypes including neurons. In this study, we encapsulated all-trans RA within poly (ɛ-caprolactone) (PCL) microspheres to generate controlled morphogen release over 28 days. RA/PCL microspheres less than ~10 µm in diameter were readily incorporated within the interstitial sites of human induced pluripotent stem cell (hiPSC) aggregates. After 5 days of culture, the microspheres did not induce cytotoxic effects and the hiPSC aggregates containing microspheres showed a decrease in the pluripotency marker SSEA-4. After 7 days of culture on laminin surfaces, aggregates expressed the neuronal marker TUJ1 and displayed extended neurite outgrowth. This approach provides consistent RA delivery throughout the aggregate and could be an effective strategy for differentiating cells in vivo.Overall, our results demonstrate that it is possible to combine hiPSC aggregates with RA/PCL microspheres for neural tissue engineering applications.
Encapsulated electrospun nanofibers can serve as an artificial dura mater, the membrane that surrounds the brain and spinal cord, due to their desirable drug delivery properties. Such nanofiber scaffolds can be used to deliver drugs such as glial cell-derived neurotrophic factor (GDNF). GDNF promotes the survival of both dopaminergic and motor neurons, making it an important target for treatment of central nervous system injuries and disorders. This work focuses on designing a novel class of encapsulated poly(ε-caprolactone) (PCL) nanofiber scaffolds with different topographies (random and aligned) that generate controlled release of GDNF to potentially serve as a suitable substitute for the dura mater during neurosurgical procedures. Random and aligned scaffolds fabricated using solutiom electrospinning were characterized for their physical properties and their ability to release GDNF over one month. GDNF bioactivity was confirmed using a PC12 cell assay with the highest concentrations of released GDNF (~ 341 ng/ml GDNF) inducing the highest levels of neurite extension (~556 µm). To test the cytocompatibility of aligned GDNF encapsulated PCL nanofibers, we successfully seeded neural progenitors derived from human induced pluripotent stem cells (hiPSCs) onto the scaffolds where they survived and differentiated into neurons. Overall, this research demonstrates the potential of such substrates to act as artificial dura while delivering bioactive GDNF in a controlled fashion. These scaffolds also support the culture and differentiation of hiPSC-derived neural progenitors, suggesting their biocompatibility with the cells of the central nervous system. factor (GDNF) promotes the survival of motor and dopaminergic neurons, making it a promising therapeutic for
Ongoing clinical trials are evaluating the use of stem cells as a way to treat traumatic spinal cord injury (SCI). However, the inhibitory environment present in the injured spinal cord makes it challenging to achieve the survival of these cells along with desired differentiation into the appropriate phenotypes necessary to regain function. Transplanting stem cells along with an instructive biomaterial scaffold can increase cell survival and improve differentiation efficiency. This study reviews the literature discussing different types of instructive biomaterial scaffolds developed for transplanting stem cells into the injured spinal cord. We have chosen to focus specifically on biomaterial scaffolds that direct the differentiation of neural stem cells and pluripotent stem cells since they offer the most promise for producing the cell phenotypes that could restore function after SCI. In terms of biomaterial scaffolds, this article reviews the literature associated with using hydrogels made from natural biomaterials and electrospun scaffolds for differentiating stem cells into neural phenotypes. It then presents new data showing how these different types of scaffolds can be combined for neural tissue engineering applications and provides directions for future studies.
Glial cell line-derived neurotrophic factor (GDNF), a growth factor expressed in the central nervous system, promotes the survival of both dopaminergic and motor neurons, making it a promising candidate for neurodegenerative disease therapy. Although GDNF is currently being evaluated in clinical trials for the treatment of Parkinson's disease (PD), the current delivery method using catheter implantation has certain limitations in terms of delivering GDNF safely and effectively. As a proof of concept, we encapsulated GDNF into poly (Ɛ-caprolactone) (PCL) microspheres to enable controlled drug release for 25 days. First, microspheres were loaded with bovine serum albumin (BSA) to determine the optimal fabrication conditions necessary to achieve the desired release rates of protein. BSA was then used as a carrier protein to preserve GDNF activity during the fabrication process in the presence of organic solvents. GDNF encapsulated microspheres were created and characterized using scanning electron microscopy. Next, the in vitro release of GDNF along with microsphere morphology was tracked over 25 days. Finally, the bioactivity of the released GDNF was confirmed using PC12 cells. This work demonstrates the potential of such microspheres for the delivery of bioactive GDNF with the end goal of developing a suitable, clinically relevant formulation for injection to appropriate regions of the brain in PD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.