Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design.
Enclosed cab filtration systems are typically used on mobile mining equipment to reduce miners' exposure to airborne dust generated during mining operations. The National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently worked with a mining equipment manufacturer to examine a new cab filtration system design for underground industrial minerals equipment. This cab filtration system uses a combination of three particulate filters to reduce equipment operators' exposure to dust and diesel particulates present in underground industrial mineral mines. NIOSH initially examined this cab filtration system using a two-instrument particle counting method at the equipment company's manufacturing shop facility to assess several alternative filters. This cab filtration system design was further studied on several pieces of equipment during a two-to seven-month period at two underground limestone mines. The two-instrument particle counting method was used outside the underground mine at the end of the production shifts to regularly test the cabs' long-term protection factor performance with particulates present in the ambient air. This particle counting method showed that three of the four cabs achieved protection factors greater than 1,000 during the field studies. The fourth cab did not perform at this level because it had a damaged filter in the system. The particle counting measurements of submicron particles present in the ambient air were shown to be a timely and useful quantification method in assessing cab performance during these field studies.
Many different types of surface mining equipment use enclosed cabs to protect equipment operators from health and safety hazards. The overburden removal and mining process can be extremely dusty and can cause excessive dust exposure. To study this issue, a cooperative research effort was established between the National Institute for Occupational Safety and Health, U.S. Silica Co., Clean Air Filter Co., and Red Dot Corp. in an effort to lower respirable dust levels in an enclosed cab on an older surface drill at a silica sand operation. Throughout this research effort, a number of modifications were incorporated into the drill's filtration and pressurization system, as well as in other areas, to improve its design and performance. An average cab efficiency of 93.4% was determined with gravimetric sampling instruments when comparing the outside with the inside cab dust levels on the final design. Although this study considered just one operation, the goal was to identify cost-effective improvements that could be implemented on all types of enclosed cabs to lower respirable dust concentrations. Two critical components for an effective enclosed cab system are having a properly designed, installed, and maintained filtration and pressurization system, along with a method for maintaining structural cab integrity, which allows the cab to be positively pressurized. Another important component is maintaining cab cleanliness. Although this research was originally directed toward the mining industry, it is also applicable to agricultural or construction equipment.
BackgroundThe use of formative research as a critical component of intervention planning is highly supported in the literature. However, studies that report such processes in practice are minimal. This paper reports on the formative data collection and analysis that informed the development of a multilevel intervention that utilizes mine assessment technology to bridge health communication between workers and management to reduce mine worker overexposure to respirable silica dust.MethodsFormative research to assess the feasibility and utility of this intervention design included stakeholder meetings and feedback, mine visits and observations, interviews with mine workers, and a focus group with mine management. Data collection took place at several US industrial mineral mine sites and a southeastern regional safety meeting. Interviews inquired about workers’ perceived susceptibility and severity to respirable silica exposure, barriers to preventing overexposure, behaviors that reduce exposure, and perceptions about respirable dust-monitoring technology. A focus group discussed mine stakeholders’ uses of various dust assessment technology.ResultsThe data was qualitatively analyzed and coded using a thematic and theoretical analysis. Researchers found recurring themes for both target audiences that informed the need and subsequent development of a mixed-method multilevel intervention to improve communication quantity and quality around dust-control practices.ConclusionsResults indicate that formative research is critical to: identify and develop an intervention that meets target audience needs; accurately represent the health problem; and develop positive relationships with research partners and stakeholders.
This article reviews various dust control technologies developed over the years at the Pittsburgh Research Laboratory of the National Institute for Occupational Safety and Health (NIOSH) to provide various options and alternatives to lower bag machine operators' and bag stackers' dust exposures. Dust exposure records for the past 20 years show that bag machine operators and bag stackers normally have the highest respirable dust exposures of workers at mineral processing plants. A substantial amount of research has been performed over the years to minimize the dust exposure to these workers and the intent is to present all this information together in one article. Most of the research describes engineering controls that were adapted to existing facilities to reduce the dust generated during bag filling, bag conveying, and bag stacking. In some cases, a single technique succeeded in lowering respirable dust concentrations for all three processes, thus reducing the dust exposure to both the bag machine operator and the bag stacker. In other cases, a technique was developed to specifically reduce the dust exposure of one process or the other. This research also reviews various controls for secondary dust exposure, including general ventilation requirements to mill buildings, the effects of background dust sources, and personal work practices. This information is presented to help industrial hygienists, plant managers, engineers, and workers lower the dust exposure of bag machine operators and bag stackers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.