Background: ACE2 is a novel homologue of angiotensin converting enzyme (ACE). ACE2 is highly expressed in human heart and animal data suggest that ACE2 is an essential regulator of cardiac function in vivo. Since overactivity of the renin-angiotensin system contributes to the progression of heart failure, this investigation assessed changes in gene expression of ACE2, ACE, AT 1 receptor and renin in the human failing heart.
Background: Low density arrays (LDAs) have recently been introduced as a novel approach to gene expression profiling. Based on real time quantitative RT-PCR (QRT-PCR), these arrays enable a more focused and sensitive approach to the study of gene expression than gene chips, while offering higher throughput than more established approaches to QRT-PCR. We have now evaluated LDAs as a means of determining the expression of multiple genes simultaneously in human tissues and cells.
The influence of native and oxidized chylomicron-remnant-like particles (CMR-LPs) on endothelium-dependent relaxation in pig coronary arteries was studied. Artificial lipid particles of a size and lipid composition resembling chylomicron remnants and containing pig apolipoprotein E were used to investigate the effects of chylomicron remnants on the relaxation of isolated segments of pig coronary arteries in response to three endothelium dilators: 5-hydroxytryptamine (5-HT), bradykinin and the calcium ionophore A23187. CMR-LPs caused significant inhibition of the maximum relaxation response of the vessels to 5-HT, but not that to bradykinin or A23187 ( P <0.05). In contrast, CMR-LPs that had been oxidized by incubation with 10 microM CuSO(4) (oxidized CMR-LPs) were found to significantly reduce maximal relaxation to bradykinin by 13% ( P <0.05) and to reduce the sensitivity of the tissue to A23187 by 1.7-fold ( P <0.05). In experiments in which either the L-arginine/nitric oxide (NO) pathway or the endothelium-derived hyperpolarizing factor (EDHF) pathway was selectively inhibited, leaving the other intact, the inhibitory effect of oxidized CMR-LPs was observed only in vessels in which the -arginine/NO-mediated pathway was operative. Furthermore, the oxidized particles had no inhibitory effect on the relaxation of the vessel segments to the non-endothelium-dependent agonists S -nitro- N -acetylpenicillamine, 5'-( N -ethylcarboxamido)adenosine or pinacidil. These results demonstrate that CMR-LPs inhibit vascular relaxation in pig coronary arteries by an endothelium-dependent mechanism involving the L-arginine/NO pathway, but not the EDHF pathway, and provide evidence in support of a role for chylomicron remnants in the endothelial dysfunction associated with hypercholesterolaemia and atherogenesis.
The effects of chylomicron remnants on the activity of basally produced nitric oxide (NO) from porcine coronary artery rings and porcine aortic endothelial cells were studied by investigating the effects of chylomicron-remnant-like particles (CMR-LPs) containing porcine apolipoprotein E on the vessel tone of porcine coronary arteries and on cGMP release by aortic endothelial cells. CMR-LPs were oxidized by incubation with CuSO(4) (10 microM) for 18 h at 37 degrees C. N (omega)-nitro-L-arginine (L-NOARG) and oxidized CMR-LPs (oxCMR-LPs), but not native CMR-LPs, increased the vessel tone of static porcine coronary artery rings (increase in tone as a percentage of the tone induced by depolarizing Krebs-Henseleit solution: L-NOARG, 14.24 +/- 2.09; oxCMR-LPs, 4.98 +/- 0.88; and native CMR-LPs, 0.47 +/- 0.21). L-NOARG, endothelium removal and oxCMR-LPs also all significantly increased the maximum relaxation of the vessels to S -nitroso- N -acetyl-DL-penicillamine. In addition, oxCMR-LPs reduced the amounts of cGMP released by porcine aortic endothelial cells into the culture medium from 116 +/- 12.0 to 84.2 +/- 11.6 fmol/microg of cellular protein, mimicking the effects of L-NOARG. These results indicate that oxCMR-LPs, but not native CMR-LPs, inhibit the activity, production or release of NO from unstimulated porcine coronary and aortic endothelial cells. oxCMR-LPs mimicked the addition of L-NOARG and endothelium removal in these experimental systems, suggesting that the lipoproteins were interfering with the L-arginine/NO pathway. This study provides further evidence to support a role of chylomicron remnants in the development of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.