Extracorporeal membrane oxygenation (ECMO) is used in critical care to manage patients with severe respiratory and cardiac failure. ECMO brings blood from a critically ill patient into contact with a non-endothelialized circuit which can cause clotting and bleeding simultaneously in this population. Continuous systemic anticoagulation is needed during ECMO. The membrane oxygenator, which is a critical component of the extracorporeal circuit, is prone to significant thrombus formation due to its large surface area and areas of low, turbulent, and stagnant flow. Various surface coatings, including but not limited to heparin, albumin, poly(ethylene glycol), phosphorylcholine, and poly(2-methoxyethyl acrylate), have been developed to reduce thrombus formation during ECMO. The present work provides an up-to-date overview of anti-thrombogenic surface coatings for ECMO, including both commercial coatings and those under development. The focus is placed on the coatings being developed for oxygenators. Overall, zwitterionic polymer coatings, nitric oxide (NO)-releasing coatings, and lubricant-infused coatings have attracted more attention than other coatings and showed some improvement in in vitro and in vivo anti-thrombogenic effects. However, most studies lacked standard hemocompatibility assessment and comparison studies with current clinically used coatings, either heparin coatings or nonheparin coatings. Moreover, this review identifies that further investigation on the thrombo-resistance, stability and durability of coatings under rated flow conditions and the effects of coatings on the function of oxygenators (pressure drop and gas transfer) are needed. Therefore, extensive further development is required before these new coatings can be used in the clinic.
All human cells are coated by a surface layer of proteoglycans, glycosaminoglycans (GAGs) and plasma proteins, called the glycocalyx. The glycocalyx transmits shear stress to the cytoskeleton of endothelial cells, maintains a selective permeability barrier, and modulates adhesion of blood leukocytes and platelets. Major components of the glycocalyx, including syndecans, heparan sulfate, and hyaluronan, are shed from the endothelial surface layer during conditions including ischaemia and hypoxia, sepsis, atherosclerosis, diabetes, renal disease, and some viral infections. Studying mechanisms of glycocalyx damage in vivo can be challenging due to the complexity of immuno-inflammatory responses which are inextricably involved. Previously, both static as well as perfused in vitro models have studied the glycocalyx, and have reported either imaging data, assessment of barrier function, or interactions of blood components with the endothelial monolayer. To date, no model has simultaneously incorporated all these features at once, however such a model would arguably enhance the study of vasculopathic processes. This review compiles a series of current in vitro models described in the literature that have targeted the glycocalyx layer, their limitations, and potential opportunities for further developments in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.