The gas-phase He I and He II photoelectron spectra of the propynylruthenium molecule CpRu(CO) 2 C≡CMe (Cp = η 5-C 5 H 5) and the ethynediyldiruthenium molecule [CpRu(CO) 2 ] 2 (µ-C≡C) are compared with the spectrum of CpRu(CO) 2 Cl to experimentally determine electronic structure interactions of the alkynyl ligands with the metal. The spectra indicate that the interaction between the filled metal-dπ and filled alkynyl-π orbitals dominates the metal-alkynyl π electronic structure, mirroring previously characterized CpFe(CO) 2 alkynyls. All valence ionizations of the Ru molecules are stabilized with respect to similar Fe compounds, contrary to the common expectation of lower ionization energies with atomic substitution down a column of the periodic table. Ab initio electronic structure calculations suggest that this stabilization traces to the greater inherent electronic relaxation energy associated with removal of Fe 3d electrons compared to removal of Ru 4d electrons. Destabilization of the first two ionization bands of the diruthenium molecule are a result of filled-filled interactions between alkynyl π-bonds with the symmetric combination of metal-metal-dπ orbitals, showing electronic communication between the metals through the alkynyl bridge. From the photoelectron spectrum, this communication was calculated to have a minimum electron-transfer integral of 0.56 eV. The stabilization of the antisymmetric combination of the metal-metal-dπ orbitals gives a direct and unique experimental measure of the interaction with the alkynyl π* orbitals. The stabilization caused by the alkynyl π* orbitals was found to be approximately one-third of the destabilization caused by the filled-filled interaction with the alkynyl π-bonds and about one-fourth to one-third the stabilization provided by back-bonding to a carbonyl ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.