The Bighorn Dolomite is a massive, cliff-forming dolostone unit found across the state of Wyoming and adjacent areas that records the transition from greenhouse to icehouse conditions during the Late Ordovician. The basal Steamboat Point Member of the Bighorn Dolomite contains cm-scale mottled fabrics often attributed to the ichnogenus Thalassinoides, but their origin remains enigmatic in Upper Ordovician strata. The development of mottled fabrics may have significant implications for marine chemistry and paleoecology. We analyzed cm-scale mottled fabrics from the basal Steamboat Point Member of the western Teton Mountains to determine their origin and develop criteria for identification of similar mottled fabrics found in other Upper Ordovician strata. In vertical cross-section, massive, m-scale exposures display vertical columns (approximately 1 cm in diameter) that anastomose and maintain decimeter-scale vertical continuity. Microscopically, the columns are composed of micro-peloidal micritic textures surrounded by spar and microspar, whereas the intercolumnar matrix is composed of dolomicrite grains, skeletal clasts, and intraclasts. We interpret the microscopic peloidal texture as a product of benthic microbial calcification that coalesced to form mesoclots—diagnostic features of thrombolitic microbialites. Paragenetic analyses reveal evidence for early lithified microbial biofilms despite dolomite replacement and aggrading neomorphism. These observations indicate the Steamboat Point Member of the Bighorn Dolomite was deposited in seawater that was highly supersaturated with respect to carbonate, consistent with other studies that suggest deposition during greenhouse conditions prior to the end-Ordovician glaciation. We present a novel ternary diagram that contains criteria to help differentiate between burrows, microbialite textures, or physical processes that may result in mottled fabrics in the rock record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.