Machine learning (ML) and artificial intelligence (AI) algorithms have the potential to derive insights from clinical data and improve patient outcomes. However, these highly complex systems are sensitive to changes in the environment and liable to performance decay. Even after their successful integration into clinical practice, ML/AI algorithms should be continuously monitored and updated to ensure their long-term safety and effectiveness. To bring AI into maturity in clinical care, we advocate for the creation of hospital units responsible for quality assurance and improvement of these algorithms, which we refer to as “AI-QI” units. We discuss how tools that have long been used in hospital quality assurance and quality improvement can be adapted to monitor static ML algorithms. On the other hand, procedures for continual model updating are still nascent. We highlight key considerations when choosing between existing methods and opportunities for methodological innovation.
Background: Postoperative gastrointestinal leak and venous thromboembolism (VTE) are devastating complications of bariatric surgery. The performance of currently available predictive models for these complications remains wanting, while machine learning has shown promise to improve on traditional modeling approaches. The purpose of this study was to compare the ability of two machine learning strategies, artificial neural networks (ANNs) and gradient boosting machines (XGBs), to conventional models using logistic regression (LR) in predicting leak and VTE after bariatric surgery. Methods: ANN, XGB, and LR prediction models for leak and VTE among adults undergoing initial elective weight loss surgery were trained and validated using preoperative data from the 2015-2017 Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database. Data was randomly split into training, validation, and testing populations. Model performance was measured by the area under the receiver-operating characteristic curve (AUC) on the testing data for each model. Results:The study cohort contained 436,807 patients. The incidences of leak and VTE were 0.70% and 0.46%. ANN (AUC 0.75, 95% CI, 0.73 -0.78) was the best-performing model for predicting leak, followed by XGB (AUC 0.70, 95% CI, 0.68 -0.72) and then LR (AUC 0.63, 95% CI, 0.61 -0.65, p < 0.001 for all comparisons). In detecting VTE, ANN, XGB, and LR achieved similar AUCs of 0.65 (95% CI, 0.63-0.68), 0.67 (95% CI, 0.64-0.70), and 0.64 (95% CI, 0.61-0.66) respectively; the performance difference between XGB and LR was statistically significant (p = 0.001).Conclusions: ANN and XGB outperformed traditional LR in predicting leak. These resultssuggest that ML has the potential to improve risk stratification for bariatric surgery, especially as techniques to extract more granular data from medical records improve. Further studies investigating the merits of machine learning to improve patient selection and risk management in bariatric surgery are warranted.
Background Accurate, pragmatic risk stratification for postoperative delirium (POD) is necessary to target preventative resources toward high-risk patients. Machine learning (ML) offers a novel approach to leveraging electronic health record (EHR) data for POD prediction. We sought to develop and internally validate a ML-derived POD risk prediction model using preoperative risk features, and to compare its performance to models developed with traditional logistic regression. Methods This was a retrospective analysis of preoperative EHR data from 24,885 adults undergoing a procedure requiring anesthesia care, recovering in the main post-anesthesia care unit, and staying in the hospital at least overnight between December 2016 and December 2019 at either of two hospitals in a tertiary care health system. One hundred fifteen preoperative risk features including demographics, comorbidities, nursing assessments, surgery type, and other preoperative EHR data were used to predict postoperative delirium (POD), defined as any instance of Nursing Delirium Screening Scale ≥2 or positive Confusion Assessment Method for the Intensive Care Unit within the first 7 postoperative days. Two ML models (Neural Network and XGBoost), two traditional logistic regression models (“clinician-guided” and “ML hybrid”), and a previously described delirium risk stratification tool (AWOL-S) were evaluated using the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive likelihood ratio, and positive predictive value. Model calibration was assessed with a calibration curve. Patients with no POD assessments charted or at least 20% of input variables missing were excluded. Results POD incidence was 5.3%. The AUC-ROC for Neural Net was 0.841 [95% CI 0. 816–0.863] and for XGBoost was 0.851 [95% CI 0.827–0.874], which was significantly better than the clinician-guided (AUC-ROC 0.763 [0.734–0.793], p < 0.001) and ML hybrid (AUC-ROC 0.824 [0.800–0.849], p < 0.001) regression models and AWOL-S (AUC-ROC 0.762 [95% CI 0.713–0.812], p < 0.001). Neural Net, XGBoost, and ML hybrid models demonstrated excellent calibration, while calibration of the clinician-guided and AWOL-S models was moderate; they tended to overestimate delirium risk in those already at highest risk. Conclusion Using pragmatically collected EHR data, two ML models predicted POD in a broad perioperative population with high discrimination. Optimal application of the models would provide automated, real-time delirium risk stratification to improve perioperative management of surgical patients at risk for POD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.