Nitrification and denitrification are key steps in nitrogen (N) cycling. The coupling of these processes, which affects the flow of N in ecosystems, requires close interaction of nitrifying and denitrifying microorganisms, both spatially and temporally. The diversity, temporal and spatial variations in the microbial communities affecting these processes was examined, in relation to N cycling, across 12 sites in the Fitzroy river estuary, which is a turbid subtropical estuary in central Queensland. The estuary is a major source of nutrients discharged to the Great Barrier Reef nearshore zone. Measurement of nitrogen fluxes showed an active denitrifying community during all sampling months. Archaeal ammonia monooxygenase (amoA of AOA, functional marker for nitrification) was significantly more abundant than Betaproteobacterial (b-AOB) amoA. Nitrite reductase genes, functional markers for denitrification, were dominated by nirS and not nirK types at all sites during the year. AOA communities were dominated by the soil/sediment cluster of Crenarchaeota, with sequences found in estuarine sediment, marine and terrestrial environments, whereas nirS sequences were significantly more diverse (where operational taxonomic units were defined at both the threshold of 5% and 15% sequence similarity) and were closely related to sequences originating from estuarine sediments. Terminal-restriction fragment length polymorphism (T-RFLP) analysis revealed that AOA population compositions varied spatially along the estuary, whereas nirS populations changed temporally. Statistical analysis of individual T-RF dominance suggested that salinity and C:N were associated with the community succession of AOA, whereas the nirS-type denitrifier communities were related to salinity and chlorophyll-a in the Fitzroy river estuary.
Despite their large areas and potential importance as methane sinks, the role of methane‐oxidizing bacteria (MOB) in native woodland soils is poorly understood. These environments are increasingly being altered by anthropogenic disturbances, which potentially alter ecosystem service provision. Dryland salinity is one such disturbance and is becoming increasingly prevalent in Australian soils. We used microarrays and analysis of soil physicochemical variables to investigate the methane‐oxidizing communities of several Australian natural woodland soils affected to varying degrees by dryland salinity. Soils varied in terms of salinity, gravitational water content, NO3‐N, SO4‐S and Mg, all of which explained to a significant degree MOB community composition. Analysis of the relative abundance and diversity of the MOB communities also revealed significant differences between soils of different salinities. Type II and type Ib methanotrophs dominated the soils and differences in methanotroph communities existed between salinity groups. The low salinity soils possessed less diverse MOB communities, including most conspicuously, the low numbers or absence of type II Methylocystis phylotypes. The differences in MOB communities suggest niche separation of MOB across varying salinities, as has been observed in the closely related ammonia‐oxidizing bacteria, and that anthropogenic disturbance, such as dryland salinity, has the potential to alter MOB community and therefore the methane uptake rates in soils in which disturbance occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.