The fungus Cryptococcus is a major cause of meningoencephalitis in HIV-infected as well as HIV-uninfected individuals with mortalities in developed countries of 20% and 30%, respectively. In HIV-related disease, defects in T-cell immunity are paramount, whereas there is little understanding of mechanisms of susceptibility in non-HIV related disease, especially that occurring in previously healthy adults. The present description is the first detailed immunological study of non-HIV-infected patients including those with severe central nervous system (s-CNS) disease to 1) identify mechanisms of susceptibility as well as 2) understand mechanisms underlying severe disease. Despite the expectation that, as in HIV, T-cell immunity would be deficient in such patients, cerebrospinal fluid (CSF) immunophenotyping, T-cell activation studies, soluble cytokine mapping and tissue cellular phenotyping demonstrated that patients with s-CNS disease had effective microbiological control, but displayed strong intrathecal expansion and activation of cells of both the innate and adaptive immunity including HLA-DR+ CD4+ and CD8+ cells and NK cells. These expanded CSF T cells were enriched for cryptococcal-antigen specific CD4+ cells and expressed high levels of IFN-γ as well as a lack of elevated CSF levels of typical T-cell specific Th2 cytokines -- IL-4 and IL-13. This inflammatory response was accompanied by elevated levels of CSF NFL, a marker of axonal damage, consistent with ongoing neurological damage. However, while tissue macrophage recruitment to the site of infection was intact, polarization studies of brain biopsy and autopsy specimens demonstrated an M2 macrophage polarization and poor phagocytosis of fungal cells. These studies thus expand the paradigm for cryptococcal disease susceptibility to include a prominent role for macrophage activation defects and suggest a spectrum of disease whereby severe neurological disease is characterized by immune-mediated host cell damage.
Objective The management of complex patients with neuroimmunological diseases is hindered by an inability to reliably measure intrathecal inflammation. Currently implemented laboratory tests developed >40 years ago either are not dynamic or fail to capture low levels of central nervous system (CNS) inflammation. Therefore, we aimed to identify and validate biomarkers of CNS inflammation in 2 blinded, prospectively acquired cohorts of untreated patients with neuroimmunological diseases and embedded controls, with the ultimate goal of developing clinically useful tools. Methods Because biomarkers with maximum utility reflect immune phenotypes, we included an assessment of cell specificity in purified primary immune cells. Biomarkers were quantified by optimized electrochemiluminescent immunoassays. Results Among markers with cell-specific secretion, soluble CD27 is a validated biomarker of intrathecal T-cell activation, with an area under the receiver operating characteristic curve of 0.97. Comparing the quantities of cerebrospinal fluid (CSF) immune cells and their respective cell-specific soluble biomarkers (released by CSF cells as well as their counterparts in CNS tissue) provided invaluable information about stationary CNS immune responses, previously attainable via brain biopsy only. Unexpectedly, progressive and relapsing–remitting multiple sclerosis (MS) patients have comparable numbers of activated intrathecal T and B cells, which are preferentially embedded in CNS tissue in the former group. Interpretation The cell-specific biomarkers of intrathecal inflammation may improve diagnosis and management of neuroimmunological diseases and provide pharmacodynamic markers for future therapeutic developments in patients with intrathecal inflammation that is not captured by imaging, such as in progressive MS.
ObjectiveInaccessibility of the inflammation compartmentalized to the central nervous system (CNS) may underlie the lack of efficacy of immunomodulatory treatments in progressive multiple sclerosis (MS). The double blind combination of Rituximab by IntraVenous and IntraThecAl injection versus placebo in patients with Low‐Inflammatory SEcondary progressive MS (RIVITALISE; NCT01212094) trial was designed to answer: (1) Whether an induction dose of intravenous and intrathecal rituximab efficiently depletes CNS B cells? and (2) If so, whether this leads to global inhibition of CNS inflammation and slowing of CNS tissue destruction?MethodsPatients aged 18–65 years were randomly assigned to rituximab or placebo. Protocol‐stipulated interim analysis quantified the efficacy of B‐cell depletion.ResultsThe efficacy on cerebrospinal fluid (CSF) biomarkers failed to reach criteria for continuation of the trial. B‐cell‐related CSF biomarkers (sCD21 and B‐cell activating factor) changed only in the active‐treatment arm. While CSF B cells were killed robustly (median −79.71%, P = 0.0176), B cells in CNS tissue were depleted inadequately (~−10–20%, P < 0.0001). Consequently, the T‐cell‐specific CSF biomarker sCD27 decreased slightly (−10.97%, P = 0.0005), while axonal damage marker, neurofilament light chain did not change. Insufficient saturation of CD20, lack of lytic complement, and paucity of cytotoxic CD56dim NK cells contribute to decreased efficacy of rituximab in the CNS.InterpretationBiomarker studies reliably quantified complementary pharmacodynamic effects of rituximab in the CNS, exposed causes for poor efficacy and determined that RIVITALISE trial would be underpowered to measure efficacy on clinical outcomes. Identified mechanisms for poor efficacy are applicable to all CNS‐inflammation targeting monoclonal antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.