Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
BACKGROUND: Epigenetic silencing of O 6 -methylguanine-DNA-methyltransferase (MGMT) by promoter methylation is associated with improved survival in glioblastomas treated with alkylating agents. In this study, we investigated MGMT promoter methylation in glioblastomas treated with temozolomide and radiotherapy in a single UK treatment centre. METHODS: Quantitative methylation data at individual CpG sites were obtained by pyrosequencing for 109 glioblastomas. RESULTS: Median overall survival (OS) was 12.4 months with 2-year survival of 17.9%. Pyrosequencing data were reproducible with archival samples yielding data for all glioblastomas. Variation in methylation patterns of discrete CpG sites and intratumoral methylation heterogeneity were observed. A total of 58 out of 109 glioblastomas showed average methylation 4non-neoplastic brain in at least one clinical sample; 86% had homogeneous methylation status in multiple samples. Methylation was an independent prognostic factor associated with prolonged progression-free survival (PFS) and OS. Cases with methylation more than 35% had the longest survival (median PFS 19.2; OS 26.2 months, 2-year survival of 59.7%). Significant differences in PFS were seen between those with intermediate or high methylation and unmethylated cases, whereas cases with low, intermediate or high methylation all showed significantly different OS. CONCLUSIONS: These data indicate that MGMT methylation is prognostically significant in glioblastomas given chemoradiotherapy in the routine clinic; furthermore, the extent of methylation may be used to provide additional prognostic stratification.
The overall outcome for patients with GBM remains poor. However, aggressive treatment at every age group is associated with extended survival similar to that described in clinical trials.
Gliomas are the most frequent primary brain tumours in adults with over 9,000 people diagnosed each year in the UK. A rapid, reagent-free and cost-effective diagnostic regime using serum spectroscopy would allow for rapid diagnostic results and for swift treatment planning and monitoring within the clinical environment. We report the use of ATR-FTIR spectral data combined with a RBF-SVM for the diagnosis of gliomas (high-grade and low-grade) from non-cancer with sensitivities and specificities on average of 93.75 and 96.53% respectively. The proposed diagnostic regime has the ability to reduce mortality and morbidity rates.
The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection—Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked.Electronic supplementary materialThe online version of this article (doi:10.1007/s11060-016-2060-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.