There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm 2 , with an average error in accuracy of 18% compared to manual sweat rate readings.
This research proposes a completely automated, computer-controlled fluid mixing and dispensing system, which is suitable for testing sweat sensing devices, as an alternative to requiring human trials during the development phase of a sweat sensor device. An arm mold was designed and implemented with dragon skin and pores to simulate sweating action. The relay controlled mixing tanks allow for the different concentration of fluid solutions at various rates of fluid dispensing through pores. The onboard single board computer controls a dozen electronic relays and it switches and presents an easy to use graphical user interface to allow end users to conduct the experiments with ease and not require further programming. With the recent advances in sweat sensors, this platform offers a unique way of testing sensing devices during development, allowing for researchers to focus on their design parameters one at a time before actual validation through human trials are conducted. The current device can provide sweat rates from 1 µL/min to 500 µL/min. Furthermore, concentrations of 10 mM up to 200 mM of salt concentrations were able to be repeatedly produced. In an ANOVA test with salt concentrations varying from 40–60 mM, a p-value of 0.365 shows that the concentration does not have any effect on the flow rate. Similarly, a p-value of 0.329 and 0.167 for different relative humidity and temperature shows that the system does not present a statistical difference. Lastly, when the interactions among all the factors were considered, a p-value of 0.416 clearly presents that the system performance is insensitive to different factors, thus validating the system reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.