The Australian marine research, industry, and stakeholder community has recently undertaken an extensive collaborative process to identify the highest national priorities for wind-waves research. This was undertaken under the auspices of the Forum for Operational Oceanography Surface Waves Working Group. The main steps in the process were first, soliciting possible research questions from the community via an online survey; second, reviewing the questions at a face-to-face workshop; and third, online ranking of the research questions by individuals. This process resulted in 15 identified priorities, covering research activities and the development of infrastructure. The top five priorities are 1) enhanced and updated nearshore and coastal bathymetry; 2) improved understanding of extreme sea states; 3) maintain and enhance the in situ buoy network; 4) improved data access and sharing; and 5) ensemble and probabilistic wave modeling and forecasting. In this paper, each of the 15 priorities is discussed in detail, providing insight into why each priority is important, and the current state of the art, both nationally and internationally, where relevant. While this process has been driven by Australian needs, it is likely that the results will be relevant to other marine-focused nations.
The Australian tropical cyclone (TC) best track database (BT) maintained by the Bureau of Meteorology has records since 1909 of varying quality and completeness. Since 2005 a series of efforts to improve the database have included: removing internal inconsistencies, adding fixes, and identifying errors using comparisons with other datasets; upgrading intensity information since 1973 including adding maximum winds (Vm) prior to 1984–85, rederiving Dvorak Current Intensity numbers from archived material and accounting for different wind–pressure relationships used; a partial reanalysis of satellite imagery including microwave imagery using the HURSAT dataset since 1987; and considering an objective intensity dataset. The BT homogeneity is reviewed in the context of improvements in satellite technology, observational coverage, scientific developments, BT procedures and the subjective variation between analysts across time and offices. The scale of these variances is greatest in the early stages prior to 1981 in the absence of geostationary satellite imagery until 1978, satellite calibration issues from 1978–80 and prior to the introduction of the enhanced infra-red Dvorak technique in 1981. The current era since 2003 is considered to be the most accurate, comprehensive and homogeneous corresponding to the expansion of the TC database to include the current suite of fields; the application of microwave and scatterometry imagery; greater standardisation of BT practices and slight changes in the application of the Dvorak technique. These improvements have generated a more consistent dataset that could be used for weather and climate research and other TC-related work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.