This review covers some recent advances made using boron dipyrromethene (Bodipy) compounds, highlighting aspects such as new sensing applications for reactive oxygen species and solvent rheology. The light-harvesting capabilities of the dye especially in the crystalline state are also discussed emphasising Bodipy derivatives as potential candidates for solid-state solar concentrators.
The target donor-acceptor compound forms an acridinium-like, locally excited (LE) singlet state on illumination with blue or near-UV light. This LE state undergoes rapid charge transfer from the acridinium ion to the orthogonally sited mesityl group in polar solution. The resultant charge-transfer (CT) state fluoresces in modest yield and decays on the nanosecond time scale. The LE and CT states reside in thermal equilibrium at ambient temperature; decay of both states is weakly activated in fluid solution, but decay of the CT state is activationless in a glassy matrix. Analysis of the fluorescence spectrum allows precise location of the relevant energy levels. Intersystem crossing competes with radiative and nonradiative decay of the CT state such that an acridinium-like, locally excited triplet state is formed in both fluid solution and a glassy matrix. Phosphorescence spectra position the triplet energy well below that of the CT state. The triplet decays via first-order kinetics with a lifetime of ca. 30 micros at room temperature in the absence of oxygen but survives for ca. 5 ms in an ethanol glass at 77 K. The quantum yield for formation of the LE triplet state is 0.38 but increases by a factor of 2.3-fold in the presence of iodomethane. The triplet reacts with molecular oxygen to produce singlet molecular oxygen in high quantum yield. In sharp contradiction to a recent literature report, there is no spectroscopic evidence to indicate the presence of an unusually long-lived CT state.
Photoinduced electron transfer is a widely applied method to convert photon energy into a useful (electro)chemical potential, both in nature and in artificial devices. There is a continuing effort to develop molecular systems in which the charge-transfer state, populated by photoinduced electron transfer, survives sufficiently long to tap the energy stored in it. In general this has been found to require the construction of rather complex molecular systems, but more recently a few approaches have been reported that allow the use of much more simple and relatively small electron donor-acceptor dyads for this purpose. The most successful examples of such systems seem to be those that apply "electron spin control" to slow down the spontaneous decay of the charge-transfer state, and these are reviewed in this minireview, with a discussion of the underlying principles and a critical evaluation of some of the claims made with regard to using a pronounced "inverted-region effect" as an alternative method to prolong the lifetime of charge-transfer states.
This tutorial review illustrates the many facets whereby the molecular conformation helps to control the rates of through-bond electron transfer. A brief introduction to Marcus theory is given, highlighting the importance of the coupling element and the super-exchange mechanism, before considering the reasons why the coupling element might depend on the molecular geometry. The methods currently available for determination of both the coupling element and the geometry are reviewed and various examples are given for systems where the structure controls the degree of electronic coupling along the molecular axis. The role of the "bridge" connecting the donor and acceptor is emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.