Discrete gold nanoparticles with diameters between 2 and 3 nm show remarkable properties including enhanced catalytic behavior and photoluminescence. However, tunability of these properties is limited by the tight size range within which they are observed. Here, we report the synthesis of discrete, bimetallic gold-copper nanoparticle alloys (diameter ≅ 2-3 nm) which display photoluminescent properties that can be tuned by changing the alloy composition. Electron microscopy, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, and pulsed-field gradient stimulated echo (1)H NMR measurements show that the nanoparticles are homogeneous, discrete, and crystalline. Upon varying the composition of the nanoparticles from 0% to 100% molar ratio copper, the photoluminescence maxima shift from 947 to 1067 nm, with excitation at 360 nm. The resulting particles exhibit brightness values (molar extinction coefficient (ε) × quantum yield (Φ)) that are more than an order of magnitude larger than the brightest near-infrared-emitting lanthanide complexes and small-molecule probes evaluated under similar conditions.
We demonstrate the synthesis of discrete, composition‐tunable gold‐cobalt nanoparticle alloys (% Co = 0–100%; diameter = 2–3 nm), in contrast with bulk behavior, which shows immiscibility of Au and Co at room temperature across all composition space. These particles are characterized by transmission electron microscopy and 1H NMR techniques, as well as inductively coupled plasma mass spectrometry, X‐ray photoelectron spectroscopy, and photoluminescence spectroscopy. In particular, 1H NMR methods allow the simultaneous evaluation of composition‐tunable magnetic properties as well as molecular characterization of the colloid, including ligand environment and hydrodynamic diameter. These experiments also demonstrate a route to optimize bimodal imaging modalities, where we identify AuxCoyNP compositions that exhibit both bright NIR emission (2884 m −1cm−1) as well as some of the highest per‐particle T 2 relaxivities (12200 mm NP −1s−1) reported to date for this particle size range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.