BACKGROUND Annual updates on cancer occurrence and trends in the United States are provided through an ongoing collaboration among the American Cancer Society (ACS), the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR). This annual report highlights the increasing burden of liver and intrahepatic bile duct (liver) cancers. METHODS Cancer incidence data were obtained from the CDC, NCI, and NAACCR; data about cancer deaths were obtained from the CDC’s National Center for Health Statistics (NCHS). Annual percent changes in incidence and death rates (age-adjusted to the 2000 US Standard Population) for all cancers combined and for the leading cancers among men and women were estimated by joinpoint analysis of long-term trends (incidence for 1992–2012 and mortality for 1975–2012) and short-term trends (2008–2012). In-depth analysis of liver cancer incidence included an age-period-cohort analysis and an incidence-based estimation of person-years of life lost because of the disease. By using NCHS multiple causes of death data, hepatitis C virus (HCV) and liver cancer-associated death rates were examined from 1999 through 2013. RESULTS Among men and women of all major racial and ethnic groups, death rates continued to decline for all cancers combined and for most cancer sites; the overall cancer death rate (for both sexes combined) decreased by 1.5% per year from 2003 to 2012. Overall, incidence rates decreased among men and remained stable among women from 2003 to 2012. Among both men and women, deaths from liver cancer increased at the highest rate of all cancer sites, and liver cancer incidence rates increased sharply, second only to thyroid cancer. Men had more than twice the incidence rate of liver cancer than women, and rates increased with age for both sexes. Among non-Hispanic (NH) white, NH black, and Hispanic men and women, liver cancer incidence rates were higher for persons born after the 1938 to 1947 birth cohort. In contrast, there was a minimal birth cohort effect for NH Asian and Pacific Islanders (APIs). NH black men and Hispanic men had the lowest median age at death (60 and 62 years, respectively) and the highest average person-years of life lost per death (21 and 20 years, respectively) from liver cancer. HCV and liver cancer-associated death rates were highest among decedents who were born during 1945 through 1965. CONCLUSIONS Overall, cancer incidence and mortality declined among men; and, although cancer incidence was stable among women, mortality declined. The burden of liver cancer is growing and is not equally distributed throughout the population. Efforts to vaccinate populations that are vulnerable to hepatitis B virus (HBV) infection and to identify and treat those living with HCV or HBV infection, metabolic conditions, alcoholic liver disease, or other causes of cirrhosis can be effective in reducing the incidence and mortality of liver cancer.
BackgroundThe American Cancer Society (ACS), Centers for Disease Control and Prevention (CDC), National Cancer Institute (NCI), and North American Association of Central Cancer Registries (NAACCR) collaborate annually to produce updated, national cancer statistics. This Annual Report includes a focus on breast cancer incidence by subtype using new, national-level data.MethodsPopulation-based cancer trends and breast cancer incidence by molecular subtype were calculated. Breast cancer subtypes were classified using tumor biomarkers for hormone receptor (HR) and human growth factor-neu receptor (HER2) expression.ResultsOverall cancer incidence decreased for men by 1.8% annually from 2007 to 2011. Rates for women were stable from 1998 to 2011. Within these trends there was racial/ethnic variation, and some sites have increasing rates. Among children, incidence rates continued to increase by 0.8% per year over the past decade while, like adults, mortality declined. Overall mortality has been declining for both men and women since the early 1990’s and for children since the 1970’s. HR+/HER2− breast cancers, the subtype with the best prognosis, were the most common for all races/ethnicities with highest rates among non-Hispanic white women, local stage cases, and low poverty areas (92.7, 63.51, and 98.69 per 100 000 non-Hispanic white women, respectively). HR+/HER2− breast cancer incidence rates were strongly, positively correlated with mammography use, particularly for non-Hispanic white women (Pearson 0.57, two-sided P < .001). Triple-negative breast cancers, the subtype with the worst prognosis, were highest among non-Hispanic black women (27.2 per 100 000 non-Hispanic black women), which is reflected in high rates in southeastern states.ConclusionsProgress continues in reducing the burden of cancer in the United States. There are unique racial/ethnic-specific incidence patterns for breast cancer subtypes; likely because of both biologic and social risk factors, including variation in mammography use. Breast cancer subtype analysis confirms the capacity of cancer registries to adjust national collection standards to produce clinically relevant data based on evolving medical knowledge.
Adiponutrin and a related protein, adipocyte triglyceride lipase (ATGL; also known as Desnutrin), were recently described as adipocyte-specific proteins with lipid hydrolase activity. Using bioinformatics, we identified three additional Adiponutrin family members (GS2, GS2-Like, and PNPLA1). Here, we report on the expression, regulation, and activity of GS2 and GS2-Like compared with Adiponutrin and Desnutrin/ATGL. GS2-Like is expressed and regulated in a manner similar to Adiponutrin; however, the absolute levels of mRNA are significantly lower than those of Adiponutrin or Desnutrin/ATGL. GS2 transcripts were identified only in humans and are highly expressed in adipose as well as other tissues. All four proteins show lipase activity in vitro, which is dependent on the presence of the active site serine for Adiponutrin, Desnutrin/ATGL, and GS2. Overexpression of Desnutrin/ATGL, GS2, and GS2-Like, but not Adiponutrin, decreases intracellular triglyceride levels. This is consistent with a function for Desnutrin/ATGL, GS2, and GS2-Like in lipolysis, but not for Adiponutrin. Consistent with previously reported data, Desnutrin/ATGL is upregulated by fasting in adipose tissue, whereas Adiponutrin is downregulated. Additionally, Adiponutrin and GS2-Like, but not Desnutrin/ATGL, are strongly induced in the liver of ob/ob mice.Our data support distinct functions for Adiponutrin and Desnutrin/ATGL and raise the possibility that GS2 may contribute significantly to lipolysis in human adipose tissue.
Vascular smooth muscle cell (VSMC) hyperplasia plays an important role in both chronic and acute vascular pathologies. Considerable work has focused on the mechanisms regulating VSMC growth and the search for agents that could suppress VSMC hyperproliferation. One of the several inhibitors studied is the glycosaminoglycan heparin, which inhibits VSMC proliferation and migration both in cell culture and in animal models (Mishra-Gorur K, Delmolino LM, Castellot Jr JJ: Biological functions of heparan sulfate and heparan sulfate proteoglycans. Trends Glycosci Glycotechnol 1998, 10:193-210). To aid our understanding of the anti-proliferative mechanism of action of heparin, we used a subtractive hybridization approach to isolate and characterize a novel growth arrest-specific (gas) gene induced in VSMCs exposed to heparin (Delmolino LM, Stearns NA, Castellot Jr JJ: Heparin induces a member of the CCN family which has characteristics of a growth arrest specific gene. Mol Biol Cell 1997, 8:287a and Delmolino LM, Stearns NA, Castellot Jr JJ: COP-1, a member of the CCN family, is a heparin-induced growth arrest specific gene in vascular smooth muscle cells. J Cell Physiol 2001, 188:45-55). This gene is a member of the cysteine-rich 61/connective tissue growth factor/nephroblastoma-overexpressed (CCN) family and has been given the name CCN5. In this report, we provide functional evidence that CCN5 can inhibit VSMC proliferation, motility, and invasiveness. In contrast, adhesion and apoptosis are unaffected by CCN5 in this cell type. We also significantly extend previous data from our laboratory that suggests CCN5 is a growth arrest-specific (gas) gene. Furthermore, we map for the first time the cellular localization of CCN5 protein in cultured VSMCs. We also examine uninjured and balloon-injured rat carotid arteries for CCN5 expression. The results from the in vitro and in vivo localization studies show that CCN5 is temporally and spatially expressed in a manner consistent with a role in regulating proliferation, motility, and invasiveness of VSMCs.
Exposure of plasmalogen-deficient variants of the murine cell line RAW 264.7 to short-term (0-100 min) treatment with electron transport inhibitors antimycin A or cyanide (chemical hypoxia) resulted in a more rapid loss of viability than in the parent strain. Results suggested that plasmalogen-deficient cells were more sensitive to reactive oxygen species (ROS) generated during chemical hypoxia; the mutants could be rescued from chemical hypoxia by using the antioxidant Trolox, an alpha-tocopherol analogue, and they were more sensitive to ROS generation by plumbagin or by rose bengal treatment coupled with irradiation. In addition, the use of buffers containing 2H2O greatly enhanced the cytotoxic effect of chemical hypoxia, suggesting the involvement of singlet oxygen. We used the unique enzymic deficiencies displayed by the mutants to differentially restore either plasmenylethanolamine (the major plasmalogen species normally found in this cell line) or its biosynthetic precursor, plasmanylethanolamine. Restoration of plasmenylethanolamine, which contains the vinyl ether, resulted in wild-type-like resistance to chemical hypoxia and ROS generators, whereas increasing levels of its precursor, which bears the saturated ether, had no effect on cell survival. These findings identify the vinyl ether double bond as a crucial element in cellular protection under these conditions and support the hypothesis that plasmalogens, through the vinyl ether, act as antioxidants to protect cells against ROS. These phospholipids might protect cells from ROS-mediated damage during events such as chemical hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.