We present finite-temperature, lattice Monte Carlo calculations of the particle number density, compressibility, pressure, and Tan's contact of an unpolarized system of short-range, attractively interacting spin-1/2 fermions in one spatial dimension, i.e., the Gaudin-Yang model. In addition, we compute the second-order virial coefficients for the pressure and the contact, both of which are in excellent agreement with the lattice results in the low-fugacity regime. Our calculations yield universal predictions for ultracold atomic systems with broad resonances in highly constrained traps. We cover a wide range of couplings and temperatures and find results that support the existence of a strong-coupling regime in which the thermodynamics of the system is markedly different from the noninteracting case. We compare and contrast our results with identical systems in higher dimensions.
We analyze the pressure and density equations of state of unpolarized non-relativistic fermions at finite temperature in one spatial dimension. For attractively interacting regimes, we perform a third-order lattice perturbation theory calculation, assess its convergence properties by comparing with hybrid Monte Carlo results (there is no sign problem in this regime), and demonstrate agreement with real Langevin calculations. For repulsive interactions, we present lattice perturbation theory results as well as complex Langevin calculations, with a modified action to prevent uncontrolled excursions in the complex plane. Although perturbation theory is a common tool, our implementation of it is unconventional; we use a Hubbard-Stratonovich transformation to decouple the system and automate the application of Wick's theorem, thus generating the diagrammatic expansion, including symmetry factors, at any desired order. We also present an efficient technique to tackle nested Matsubara frequency sums without relying on contour integration, which is independent of dimension and applies to both relativistic and non-relativistic systems, as well as all energy-independent interactions. We find exceptional agreement between perturbative and non-perturbative results at weak couplings, and furnish predictions based on complex Langevin at strong couplings. We additionally present perturbative calculations of up to the fifth-order virial coefficient for repulsive and attractive couplings. Both the lattice perturbation theory and complex Langevin formalisms can easily be extended to a variety of situations including polarized systems, bosons, and higher dimension.
Using the lattice Monte Carlo method, we compute the energy and Tan's contact in the ground state as well as the first excited state of few-to many-fermion systems in a one-dimensional periodic box. We focus on unpolarized systems of N = 4, 6, ..., 12 particles, with a zero-range interaction, and a wide range of attractive couplings. In addition, we provide extrapolations to the infinite-volume and thermodynamic limits.
We present a nonperturbative computation of the equation of state of polarized, attractively interacting, nonrelativistic fermions in one spatial dimension at finite temperature. We show results for the density, spin magnetization, magnetic susceptibility, and Tan's contact. We compare with the second-order virial expansion, a next-to-leading-order lattice perturbation theory calculation, and interpret our results in terms of pairing correlations. Our lattice Monte Carlo calculations implement an imaginary chemical potential difference to avoid the sign problem. The thermodynamic results on the imaginary side are analytically continued to obtain results on the real axis. We focus on an intermediate-to strong-coupling regime, and cover a wide range of temperatures and spin imbalances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.