Lung cancer is the most common malignancy in the Western world, and the main risk factor is tobacco smoking. Polymorphisms in metabolic genes may modulate the risk associated with environmental factors. The glutathione S-transferase theta 1 gene (GSTT1) is a particularly attractive candidate for lung cancer susceptibility because of its involvement in the metabolism of polycyclic aromatic hydrocarbons found in tobacco smoke and of other chemicals, pesticides, and industrial solvents. The frequency of the GSTT1 null genotype is lower among Caucasians (10-20%) than among Asians (50-60%). The authors present a meta- and a pooled analysis of case-control, genotype-based studies that examined the association between GSTT1 and lung cancer (34 studies, 7,629 cases and 10,087 controls for the meta-analysis; 34 studies, 7,044 cases and 10,000 controls for the pooled analysis). No association was observed between GSTT1 deletion and lung cancer for Caucasians (odds ratio (OR) = 0.99, 95% confidence interval (CI): 0.87, 1.12); for Asians, a positive association was found (OR = 1.28, 95% CI: 1.10, 1.49). In the pooled analysis, the odds ratios were not significant for either Asians (OR = 0.97, 95% CI: 0.83, 1.13) or Caucasians (OR = 1.09, 95% CI: 0.99, 1.21). No significant interaction was observed between GSTT1 and smoking on lung cancer, whereas GSTT1 appeared to modulate occupational-related lung cancer.
The study was funded by the UK Health and Safety Executive, the UK Department of Environment, Transport and the Regions, the UK Department of Health (Grant Code DoH 1216760) and the European Chemical Industry Council (grant code EMSG19). No competing interests declared.
The repair of specific types of DNA alkylation damage by O6-alkylguanine-DNA alkyltransferase (MGMT) is a major mechanism of resistance to the carcinogenic and chemotherapeutic effects of certain alkylating agents. MGMT expression levels vary widely between individuals but the underlying causes of this variability are not known. To address this, we used an expressed single nucleotide polymorphism (SNP) and demonstrated that the MGMT alleles are frequently expressed at different levels in peripheral blood mononuclear cells (PBMC). This suggests that there is a genetic component of inter-allelic variation of MGMT levels that maps close to or within the MGMT locus. We then used quantitative trait locus (QTL) analysis using intragenic SNPs and found that there are at least two sites influencing inter-individual variation in PBMC MGMT activity. One is characterized by an SNP at the 3' end of the first intron and the second by two SNPs in the last exon. The latter are in perfect disequilibrium and both result in amino acid substitutions-one of them, Ile143Val, affecting an amino acid close to the Cys145 residue at the active site of MGMT. Using in vitro assays, we further showed that while the Val143 variant did not affect the activity of the protein on methylated DNA substrate, it was more resistant to inactivation by the MGMT pseudosubstrate, O6-(4-bromothenyl)guanine. These findings suggest that further investigations of the potential epidemiological and clinical significance of inherited differences in MGMT expression and activity are warranted.
The farmers reporting chronic ill health due to organophosphate exposure have a higher proportion of the PON1-192R polymorphism associated with lower rates of diazoxon hydrolysis and lower rates of diazoxon hydrolysis than the controls and that their ill health may be explained by a lower ability to detoxify diazoxon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.