Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse communities occur at intermediate levels of species richness. Interpretations of redundancy thus vary for different functional groups and related ecosystem functions (e.g. pollination), and can be substantially different to relationships involving entire ecological communities.
The red fox (Vulpes vulpes) is a major predator of Australian wildlife and livestock, but relatively few data exist on fox home-range size and movements in agricultural landscapes. We used radio-telemetry to measure variability in fox home-range size and overlap, and to quantify nightly movements in farmland in south-eastern Australia. Home-range estimates were calculated using the Minimum Convex Polygon (MCP) and Kernel Contours methods. Fourteen foxes were radio-tracked, with home-range size varying from 287 to 3574 ha (mean = 1177 ha, ±920 ha (s.d.), n = 10 foxes) based on the 100% MCP and 151–3196 ha (mean = 639 ha, ± 930 ha (s.d.), n = 10 foxes) based on 95% Kernel. Home-range overlap was greater between subadults than adult foxes; especially at the core home-range level where adult home ranges were virtually exclusive. The average (minimum) area covered by adult foxes during a 12-h nightly period was 383 ha (±347 ha (s.d.), range = 136–1446 ha, n = 4 foxes). The minimum (straight-line) distance travelled by adult foxes during a night was 4.8–16 km (mean = 9.4 km, ± 3.7 km (s.d.), n = 4 foxes). Through continuous radio-tracking, we found that foxes habitually travel over the same ground when moving between foci of interest. Our results improve understanding of fox ranging behaviour in the agricultural landscapes of southern Australia.
ContextThe success of conservation fences at protecting reintroduced populations of threatened mammals from introduced predators has prompted an increase in the number and extent of fenced exclosures. Excluding introduced species from within conservation fences could also benefit components of insitu faunal assemblages that are prey for introduced predators, such as reptiles and small mammals. Conversely, reintroduced mammals may compete with smaller mammals and reptiles for resources, or even prey on them. AimsIn a 10-year study from 2008, we examine how small terrestrial vertebrates respond to the exclusion of introduced predators, the feral cat (Felis catus) and red fox (Vulpes Vulpes), introduced herbivores and the reintroduction of regionally extinct mammal species. MethodsDifferences in the yearly relative abundance of reptiles and mammals according to habitat type and whether sites were fenced or not, were tested using multivariate generalised linear models. Next, we calculated univariate P-values to identify individual species that showed significant relationships, positive and negative, with any of the explanatory variables. Key resultsTotal captures of reptiles were lower inside the conservation fence in all years, whereas total captures of small mammals were markedly higher inside the fenced area, notably in dasyurids. ConclusionOur results showed that conservation fences can deliver benefits for some fauna (but not all) beyond facilitating the reintroduction of highly threatened mammals. ImplicationsOur results demonstrated the consequential impacts of introduced predators on the Australian small mammal fauna, and showed that predator-exclusion fences can be an effective conservation intervention for this guild.
Camera traps are used increasingly to estimate population density for elusive and difficult to observe species. A standard practice for mammalian surveys is to place cameras on roads, trails, and paths to maximize detections and/or increase efficiency in the field. However, for many species it is unclear whether track‐based camera surveys provide reliable estimates of population density. Understanding how the spatial arrangement of camera traps affects population density estimates is of key interest to contemporary conservationists and managers given the rapid increase in camera‐based wildlife surveys. We evaluated the effect of camera‐trap placement, using several survey designs, on density estimates of a widespread mesopredator, the red fox Vulpes vulpes , over a two‐year period in a semi‐arid conservation reserve in south‐eastern Australia. Further, we used the certainty in the identity and whereabouts of individuals (via GPS collars) to assess how resighting rates of marked foxes affect density estimates using maximum likelihood spatially explicit mark–resight methods. Fox detection rates were much higher at cameras placed on tracks compared with off‐track cameras, yet in the majority of sessions, camera placement had relatively little effect on point estimates of density. However, for each survey design, the precision of density estimates varied considerably across sessions, influenced heavily by the absolute number of marked foxes detected, the number of times marked foxes was resighted, and the number of detection events of unmarked foxes. Our research demonstrates that the precision of population density estimates using spatially explicit mark–resight models is sensitive to resighting rates of identifiable individuals. Nonetheless, camera surveys based either on‐ or off‐track can provide reliable estimates of population density using spatially explicit mark–resight models. This underscores the importance of incorporating information on the spatial behavior of the subject species when planning camera‐trap surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.