This paper looks at the task of predicting word association strengths across three datasets; WordNet Evocation (BoydGraber et al., 2006), University of Southern Florida Free Association norms (Nelson et al., 2004), and Edinburgh Associative Thesaurus (Kiss et al., 1973). We achieve results of r = 0.357 and ρ = 0.379, r = 0.344 and ρ = 0.300, an ρ = 0.292 and ρ = 0.363, respectively. We find Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) cosine similarities, as well as vector offsets, to be the highest performing features. Furthermore, we examine the usefulness of Gaussian embeddings (Vilnis and McCallum, 2014) for predicting word association strength, the first work to do so.
We propose a novel tensor embedding method that can effectively extract lexical features for humor recognition. Specifically, we use wordword co-occurrence to encode the contextual content of documents, and then decompose the tensor to get corresponding vector representations. We show that this simple method can capture features of lexical humor effectively for continuous humor recognition. In particular, we achieve a distance of 0.887 on a global humor ranking task, comparable to the top performing systems from SemEval 2017 Task 6B (Potash et al., 2017) but without the need for any external training corpus. In addition, we further show that this approach is also beneficial for small sample humor recognition tasks through a semi-supervised label propagation procedure, which achieves about 0.7 accuracy on the 16000 One-Liners (Mihalcea and Strapparava, 2005) and Pun of the Day (Yang et al., 2015) humour classification datasets using only 10% of known labels. * Zhenjie Zhao and Andrew Cattle contributed equally to this work. † E.
This paper explores the role of semantic relatedness features, such as word associations, in humour recognition. Specifically, we examine the task of inferring pairwise humour judgments in Twitter hashtag wars. We examine a variety of word association features derived from the University of Southern Florida Free Association Norms (USF) (Nelson et al., 2004) and the Edinburgh Associative Thesaurus (EAT) (Kiss et al., 1973) and find that word associationbased features outperform Word2Vec similarity, a popular semantic relatedness measure. Our system achieves an accuracy of 56.42% using a combination of unigram perplexity, bigram perplexity, EAT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.