Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles.
Extensive experimental and theoretical research over the past several decades has pursued strategies to develop hydrogels with high mechanical strength. Our study investigated the effect of combining two approaches, addition of nanoparticles and crosslinking two different polymers (to create double-network hydrogels), on the mechanical properties of hydrogels. Our experimental analyses revealed that these orthogonal approaches may be combined to synthesize hydrogel composites with enhanced mechanical properties. However, the enhancement in double network hydrogel elastic modulus due to incorporation of nanoparticles is limited by the ability of the nanoparticles to strongly interact with the polymers in the network. Moreover, double-network hydrogel nanocomposites prepared using lower monomer concentrations showed higher enhancements in elastic moduli compared to those prepared using high monomer concentrations, thus indicating that the concentration of hydrogel monomers used for the preparation of the nanocomposites had a significant effect on the extent of nanoparticle-mediated enhancements. Collectively, these results demonstrate that the hypotheses previously developed to understand the role of nanoparticles on the mechanical properties of hydrogel nanocomposites may be extended to double-network hydrogel systems and guide the development of next-generation hydrogels with extraordinary mechanical properties through a combination of different approaches.
Extensive experimental and theoretical research over the past several decades has culminated in the understanding of the mechanisms behind nanoparticle-mediated enhancements on the mechanical properties of hydrogels. This information is not only crucial to realizing applications that directly benefit from developing hydrogels with high mechanical strength, but also to guide the development of strategies to further enhance hydrogel properties by combining different approaches. In our study, we investigated the effect of combining two approaches – addition of nanoparticles and crosslinking two different polymers (to create double-network hydrogels) – on the mechanical properties of hydrogels. Our studies revealed that these approaches may be combined to synthesize hydrogel composites with enhanced properties; however, both polymers in the double-network hydrogel must strongly interact with the nanoparticles to fully benefit from the addition of nanoparticles. Moreover, the concentration of hydrogel monomers used for the preparation of the double-network hydrogels had a significant effect on the extent of nanoparticle-mediated enhancements; double-network hydrogel nanocomposites prepared using lower monomer concentrations showed higher enhancements in elastic moduli compared to those prepared using high monomer concentrations. Collectively, these results demonstrate that the hypotheses previously developed to understand the role of nanoparticles on the mechanical properties of hydrogel nanocomposites may be extended to double-network hydrogel systems and guide the development of next generation hydrogels with extraordinary mechanical properties through a combination of orthogonal approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.