PurposeTo evaluate the prognostic value of 18F-FDG PET-CT performed in the third week (iPET) of definitive radiation therapy (RT) in patients with newly diagnosed locally advanced mucosal primary head and neck squamous-cell-carcinoma (MPHNSCC).MethodologySeventy-two patients with MPHNSCC treated with radical RT underwent staging PET-CT and iPET. The maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV) and total lesional glycolysis (TLG) of primary tumour (PT) and index node (IN) [defined as lymph node(s) with highest TLG] were analysed, and results were correlated with loco-regional recurrence-free survival (LRFS), disease-free survival (DFS), metastatic failure-free survival(MFFS) and overall survival (OS), using Kaplan-Meier analysis.ResultsOptimal cutoffs (OC) were derived from receiver operating characteristic curves: SUVmax-PT = 4.25 g/mL, MTVPT = 3.3 cm3, TLGPT = 9.4 g, for PT, and SUVmax-IN = 4.05 g/mL, MTVIN = 1.85 cm3 and TLGIN = 7.95 g for IN. Low metabolic values in iPET for PT below OC were associated with statistically significant better LRFS and DFS. TLG was the best predictor of outcome with 2-year LRFS of 92.7 % vs. 71.1 % [p = 0.005, compared with SUVmax (p = 0.03) and MTV (p = 0.022)], DFS of 85.9 % vs. 60.8 % [p = 0.005, compared with SUVmax (p = 0.025) and MTV (p = 0.018)], MFFS of 85.9 % vs. 83.7 % [p = 0.488, compared with SUVmax (p = 0.52) and MTV (p = 0.436)], and OS of 81.1 % vs. 75.0 % [p = 0.279, compared with SUVmax (p = 0.345) and MTV (p = 0.512)]. There were no significant associations between the percentage reduction of primary tumour metabolic parameters and outcomes. In patients with nodal disease, metabolic parameters below OC (for both PT and IN) were significantly associated with all oncological outcomes, while TLG was again the best predictor: LRFS of 84.0 % vs. 55.3 % (p = 0.017), DFS of 79.4 % vs. 38.6 % (p = 0.001), MFFS 86.4 % vs. 68.2 % (p = 0.034) and OS 80.4 % vs. 55.7 % (p = 0.045).ConclusionThe metabolic parameters of iPET can be useful predictors of patient outcome and potentially have a role in adaptive therapy for MPHNSCC. Among the three parameters, TLG was found to be the best prognostic indicator of oncological outcomes.
Addition of iPET significantly improves the prognostic values of all three metabolic parameters and can potentially be used in future adaptive local and systemic therapy trials.
Background and purpose: Functional avoidance radiation therapy (RT) aims at sparing functional lung regions. The purpose of this simulation study was to evaluate the feasibility of functional lung avoidance methodology in RT of lung cancer and to characterize the achievable dosimetry of single photon emission computed tomography (SPECT) guided treatment planning. Materials and methods: Fifteen consecutive lung cancer patients were included and planned for definitive RT of 60-66 Gy in 2-Gy fractions. Two plans were optimized: a standard CT-plan, and functional SPECT-plan. The objective was to reduce dose to the highly functional lung subvolumes without compromising tumour coverage, and respecting dose to other organs at risk. For each patient a 3D-conformal, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy plans were created for standard and functional avoidance. Standard versus functional dose-volume parameters for functional lung (FL) subvolumes, organs at risk and tumour coverage were compared. Results: The largest dose reduction was achieved with IMRT plans. Functional plans resulted in dose reduction from 9.0 Gy to 6.7 Gy (mean reduction of 2.3 Gy or 26%) to the highest functional subvolume FL80% (95%CI 1.1; 3.5). Dose to FL40% was reduced from 13.3 Gy to 11.6 Gy with functional planning. Dose reduction to FL40% was 1.7 Gy (95%CI 0.9; 2.6). Functional volume of lung receiving over 20 Gy improved by 5% (standard 22%, functional 17%). Dose to organs at risk and tumour coverage were not significantly different between plans. Conclusions: SPECT/CT-guided planning resulted in improved dose-volumetric outcomes for functional lung. This methodology may lead to potential reduction in radiation-induced lung toxicity.
Focal FDG uptake in the thyroid gland on PET/CT showed a malignancy risk of 32%. The intensity of uptake does not predict histology and underpins the importance of further investigations to exclude intercurrent thyroid cancer in suitable patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.