As the global COVID-19 pandemic evolves, our knowledge of the respiratory and non-respiratory symptoms continues to grow. One such symptom, anosmia, may be a neurologic marker of coronavirus infection and the initial presentation of infected patients. Because this symptom is not routinely investigated by imaging, there is conflicting literature on neuroimaging abnormalities related to COVID-19-related anosmia. We present a novel case of COVID-19 anosmia with definitive olfactory bulb atrophy compared with pre-COVID imaging. The patient had prior MR imaging related to a history of prolactinoma that provided baseline volumes of her olfactory bulbs. After a positive diagnosis of COVID-19 and approximately 2 months duration of anosmia, an MRI was performed that showed clear interval olfactory bulb atrophy. This diagnostic finding is of prognostic importance and indicates that the olfactory entry point to the brain should be further investigated to improve our understanding of COVID infectious pathophysiology.
We explore the possibility of using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to discern microstructural abnormalities in the hippocampus indicative of mesial temporal sclerosis (MTS) at the subfield level.
Methods:We analyzed data from 57 patients with refractory epilepsy who previously underwent 3.0-T magnetic resonance imaging (MRI) including DTI as a standard part of presurgical workup. We collected information about each subject's seizure semiology, conventional electroencephalography (EEG), highdensity EEG, positron emission tomography reports, surgical outcome, and available histopathological findings to assign a final diagnostic category. We also reviewed the radiology MRI report to determine the radiographic category. DTIand NODDI-based metrics were obtained in the hippocampal subfields.Results: By examining diffusion characteristics among subfields in the final diagnostic categories, we found lower orientation dispersion indices and elevated axial diffusivity in the dentate gyrus in MTS compared to no MTS. By similarly examining among subfields in the different radiographic categories, we found all diffusion metrics were abnormal in the dentate gyrus and CA1. We finally examined whether diffusion imaging would better inform a radiographic diagnosis with respect to the final diagnosis, and found that dentate diffusivity suggested subtle changes that may help confirm a positive radiologic diagnosis.
Significance:The results suggest that diffusion metric analysis at the subfield level, especially in dentate gyrus and CA1, maybe useful for clinical confirmation of MTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.