Phthalocyanines have been used as photodynamic therapy (PDT) agents because of their uniquely favorable optical properties and high photostability. They have been shown to be highly successful for the treatment of cancer through efficient singlet-oxygen ((1)O(2)) production. However, due to their hydrophobic properties, the considerations of solubility and cellular location have made understanding their photophysics in vitro and in vivo difficult. Indeed, many quantitative assessments of PDT reagents are undertaken in purely organic solvents, presenting challenges for interpreting observations during practical application in vivo. With steady-state and time-resolved laser spectroscopy, we show that for axial ligated silicon phthalocyanines in aqueous media, both the water:lipophile ratio and the pH have drastic effects on their photophysics, and ultimately dictate their functionality as PDT drugs. We suggest that considering the presented photophysics for PDT drugs in aqueous solutions leads to guidelines for a next generation of even more potent PDT agents.
The use of macrocyclic molecules for both imaging and photodynamic therapy (PDT) has proven to be a powerful method for assessing and treating diseases, respectively. However, many potential candidates for these applications rely on rigid organic structures which are hydrophobic and thus lead to possible aggregation in aqueous solutions such as blood. Here, we describe the discovery of noncovalent J-aggregate dimers of the asymmetrically, axially modified silicon phthalocyanine 4 (Pc 4) in aqueous solutions through steady-state and time-resolved spectroscopy. Remarkably, the monomer-dimer equilibrium is dictated by water content and pH, with free monomers resulting in favorable solvation conditions even after formation of the dimer complex. This work sheds light on previous observations of Pc 4 behavior in cells during PDT, and can further elucidate the structure-activity relationship of these important molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.