Abstract— A full‐color AMOLED display with an RGBW color filter pattern has been fabricated. Displays with this format require about one‐half the power of analogous RGB displays. RGBW and RGB 2.16‐in.‐diagonal displays with average power consumptions of 180 and 340 mW, respectively, were characterized for a set of standard digital still camera images at a luminance of 100 cd/m2. In both cases, a white‐emitting AMOLED was used as the light source, and standard LCD filters were used to provide the R, G, and B emission. The color gamuts of these displays were identical and the higher overall efficiency of the RGBW format results from two factors. First, a large fraction of a typical image is near neutral in color and can be reproduced using the white sub‐pixel. Second, the white sub‐pixel in an RGBW AMOLED display is highly efficient because of the absence of any color filter. The efficiency of these displays can be further enhanced by choosing a white emitter optimized to the target display white point (in this case D65). A two‐emission layer configuration based upon separate yellow and blue‐emitting regions is shown to be well suited for both the RGBW and RGB formats.
In this paper, we describe techniques for improving the power consumption and lifetime of full-color AMOLED displays with an RGBW pixel format. A highly efficient and stable white OLED, with color optimized for the display white point (D65) has been developed, which enables low power consumption as well as stable emission. Additionally, a novel approach for improving the lifetime of RGBW displays using subsampled R and B subpixels is discussed.
Abstract— The fabrication of full‐color RGBW OLED displays using a white emitter with RGB color filters has been previously described. This paper discusses the effect of several display‐system factors on the important RGBW OLED display performance attributes of power consumption, lifetime, and perceived image quality. These display‐system factors include the spectrum of the white OLED, the white OLED structure, the color‐filter selection, the subpixel aperture ratios, and the pixel arrangement (including sub‐sampling).
Abstract— By using current technology, it is possible to design and fabricate performance‐competitive TV‐sized AMOLED displays. In this paper, the system design considerations are described that lead to the selection of the device architecture (including a stacked white OLED‐emitting unit), the backplane technology [an amorphous Si (a‐Si) backplane with compensation for TFT degradation], and module design (for long life and low cost). The resulting AMOLED displays will meet performance and lifetime requirements, and will be manufacturing cost‐competitive for TV applications. A high‐performance 14‐in. AMOLED display was fabricated by using an in‐line OLED deposition machine to demonstrate some of these approaches. The chosen OLED technologies are scalable to larger glass substrate sizes compatible with existing a‐Si backplane fabs.
In this paper, we compare the performance of full-color AM-OLED displays fabricated from singlet-and triplet-based materials. A systems-level approach was used to evaluate material performance, in terms of contribution to display power consumption, lifetime, and color gamut. Display architecture techniques were evaluated, such as microcavities and color filters, to enhance the performance of the display. Materials used for the evaluation included high-performance OLED materials from Kodak and published results from other OLED material manufacturers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.