We present a hybrid neural-network for human face recognition which compares favourably with other methods. The system combines local image sampling, a self-organizing map (SOM) neural network, and a convolutional neural network. The SOM provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the SOM, and a multilayer perceptron (MLP) in place of the convolutional network for comparison. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze the computational complexity and discuss how new classes could be added to the trained recognizer.
Abstract. This paper discusses the application of a modern signal processing technique known as independent component analysis (ICA) or blind source separation to multivariate financial time series such as a portfolio of stocks. The key idea of ICA is t o linearly map the observed multivariate time series into a new space of statistically independent components (ICs). This can be viewed as a factorization of the portfolio since joint probabilities become simple products in the coordinate system of the ICs. We apply ICA to three years of daily returns of the 28 largest Japanese stocks and compare the results with those obtained using principal component analysis. The results indicate that the estimated ICs fall into two categories, (i) infrequent but large shocks (responsible for the major changes in the stock prices), and (ii) frequent smaller fluctuations (contributing little to the overall level of the stocks). We show that the overall stock price can be reconstructed surprisingly well by using a small number of thresholded weighted ICs. In contrast, when using shocks derived from principal components instead of independent components, the reconstructed price is less similar to the original one. Independent component analysis is a potentially powerful method of analyzing and understanding driving mechanisms in financial markets. There are further promising applications to risk management since ICA focuses on higher-order statistics.
A new neural network architecture involving either local feedforward global feedforward, and/or local recurrent global feedforward structure is proposed. A learning rule minimizing a mean square error criterion is derived. The performance of this algorithm (local recurrent global feedforward architecture) is compared with a local-feedforward global-feedforward architecture. It is shown that the local-recurrent global-feedforward model performs better than the local-feedforward global-feedforward model.
A commonly encountered problem in MLP (multi-layer perceptron) classification problems is related to the prior probabilities of the individual classes-if the number of training examples that correspond to each class varies significantly between the classes, then it may be harder for the network to learn the rarer classes in some cases. Such practical experience does not match theoretical results which show that MLPs approximate Bayesian a posteriori probabilities (independent of the prior class probabilities). Our investigation of the problem shows that the difference between the theoretical and practical results lies with the assumptions made in the theory (accurate estimation of Bayesian a posteriori probabilities requires the network to be large enough, training to converge to a global minimum, infinite training data, and the a priori class probabilities of the test set to be correctly represented in the training set). Specifically, the problem can often be traced to the fact that efficient MLP training mechanisms lead to sub-optimal solutions for most practical problems. In this chapter, we demonstrate the problem, discuss possible methods for alleviating it, and introduce new heuristics which are shown to perform well on a sample ECG classification problem. The heuristics may also be used as a simple means of adjusting for unequal misclassification costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.