The Pax3-FKHR fusion protein is present in alveolar rhabdomyosarcoma and results from the t(2;13) (q35;q14) chromosomal translocation. Its oncogenic activity is dependent on a combination of protein-DNA and protein-protein interactions mediated by the Pax3 homeodomain recognition helix. In this report we demonstrate that human Daxx (hDaxx) interacts with Pax3 in vivo and with DNA-bound Pax3 in vitro. This interaction is mediated primarily through the homeodomain recognition helix with the additional involvement of the octapeptide domain and its N-terminal flanking amino acids. Through this interaction hDaxx represses the transcriptional activity of Pax3 by approximately 80%. The Pax3-FKHR fusion is unresponsive to this repressive effect despite an observed endogenous interaction with hDaxx in a rhabdomyosarcoma tumor cell line. Therefore, these data support the model that fusion of FKHR to Pax3 not only adds a strong transactivation domain, but also deregulates transcriptional control of Pax3 by overriding the natural repressive effect of hDaxx.
Nuclear factor κB (NF-κB) is involved in multiple skeletal muscle disorders, but how it functions in differentiation remains elusive given that both anti- and promyogenic activities have been described. In this study, we resolve this by showing that myogenesis is controlled by opposing NF-κB signaling pathways. We find that myogenesis is enhanced in MyoD-expressing fibroblasts deficient in classical pathway components RelA/p65, inhibitor of κB kinase β (IKKβ), or IKKγ. Similar increases occur in myoblasts lacking RelA/p65 or IKKβ, and muscles from RelA/p65 or IKKβ mutant mice also contain higher fiber numbers. Moreover, we show that during differentiation, classical NF-κB signaling decreases, whereas the induction of alternative members IKKα, RelB, and p52 occurs late in myogenesis. Myotube formation does not require alternative signaling, but it is important for myotube maintenance in response to metabolic stress. Furthermore, overexpression or knockdown of IKKα regulates mitochondrial content and function, suggesting that alternative signaling stimulates mitochondrial biogenesis. Together, these data reveal a unique IKK/NF-κB signaling switch that functions to both inhibit differentiation and promote myotube homeostasis.
Pax3, a member of the paired class homeodomain family of transcription factors, is essential for early skeletal muscle development. Previously, others and we have shown that the stability of Pax3 is regulated on a post-translational level. Evidence in the literature and from our laboratory suggests that phosphorylation, a common form of regulation, may play a role. However, at present, the sites of Pax3 phosphorylation are not known. We demonstrate here the first evidence that Pax3 exists as a phosphoprotein in proliferating mouse primary myoblasts. Using an in vitro kinase assay, deletion, and point mutant analysis, we conclusively identify Ser205 as a site of phosphorylation. The phosphorylation of Ser205 on endogenously expressed Pax3 was confirmed in vivo using antibodies specific for phosphorylation at Ser205. Finally, we demonstrate for the first time that the phosphorylation status of endogenous Pax3 changes rapidly upon the induction of myogenic differentiation. The presence of phosphorylation in a region of Pax3 important for mediating protein-protein interactions, and the fact that phosphorylation is lost upon induction of differentiation, allow for speculation on the biological relevance of phosphorylation.
The chimeric transcription factor Pax3-FKHR, produced by the t(2;13)(q35;q14) chromosomal translocation in alveolar rhabdomyosarcoma, consists of the two Pax3 DNA binding domains (paired box and homeodomain) fused to the C-terminal forkhead (FKHR) sequences that contain a potent transcriptional activation domain. To determine which of these domains are required for cellular transformation, Pax3, Pax3-FKHR, and selected mutants were retrovirally expressed in NIH 3T3 cells and evaluated for their capacity to promote anchorage-independent cell growth. Mutational analysis revealed that both the third α-helix of the homeodomain and a small region of the FKHR transactivation domain are absolutely required for efficient transformation by the Pax3-FKHR fusion protein. Surprisingly, point mutations in the paired domain that abrogate sequence-specific DNA binding retained transformation potential equivalent to that of the wild-type protein. This finding suggests that DNA binding mediated through the Pax3 paired box is not required for transformation. Our results demonstrate that the integrity of the Pax3 homeodomain recognition helix and the FKHR transactivation domain is necessary for efficient cellular transformation by the Pax3-FKHR fusion protein.
Traditional chemotherapy and radiotherapy for cancer treatment face serious challenges such as drug resistance and toxic side effects. Complementary / Alternative medicine is increasingly being practiced worldwide due to its safety beneficial therapeutic effects. We hypothesized that a super combination (SC) of known phytochemicals used at bioavailable levels could induce 100% killing of breast cancer (BC) cells without toxic effects on normal cells and that microarray analysis would identify potential genes for targeted therapy of BC. Mesenchymal Stems cells (MSC, control) and two BC cell lines were treated with six well established pro-apoptotic phytochemicals individually and in combination (super cocktail), at bioavailable levels. The compounds were ineffective individually. In combination, they significantly suppressed BC cell proliferation (>80%), inhibited migration and invasion, caused cell cycle arrest and induced apoptosis resulting in 100% cell death. However, there were no deleterious effects on MSC cells used as control. Furthermore, the SC down-regulated the expression of PCNA, Rb, CDK4, BcL-2, SVV, and CD44 (metastasis inducing stem cell factor) in the BC cell lines. Microarray analysis revealed several differentially expressed key genes (PCNA, Rb, CDK4, Bcl-2, SVV, P53 and CD44) underpinning SC-promoted BC cell death and motility. Four unique genes were highly up-regulated (ARC, GADD45B, MYLIP and CDKN1C). This investigation indicates the potential for development of a highly effective phytochemical combination for breast cancer chemoprevention / chemotherapy. The novel over-expressed genes hold the potential for development as markers to follow efficacy of therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.