SUMMARY
During endoplasmic reticulum (ER) stress, homeostatic signaling through the unfolded protein response (UPR) augments ER protein-folding capacity. If homeostasis is not restored, the UPR triggers apoptosis. We found that the ER transmembrane kinase/endoribonuclease (RNase) IRE1α is a key component of this apoptotic switch ER stress induces IRE1α kinase autophosphorylation, activating the RNase to splice XBP1 mRNA and produce the homeostatic transcription factor, XBP1s. Under ER stress—or forced autophosphorylation—IRE1α’s RNase also causes endonucleolytic decay of many ER-localized mRNAs, including those encoding chaperones, as early events culminating in apoptosis. Using chemical-genetics, we show that kinase inhibitors bypass autophosphorylation to activate the RNase by an alternate mode that enforces XBP1 splicing, and averts mRNA decay and apoptosis. Alternate RNase activation by kinase-inhibited IRE1α can be reconstituted in vitro. We propose that divergent cell fates during ER stress hinge on a balance between IRE1α RNase outputs that can be tilted with kinase inhibitors to favor survival.
SUMMARY
When unfolded proteins accumulate to irremediably high levels within the endoplasmic reticulum (ER), intracellular signaling pathways called the unfolded protein response (UPR) become hyperactivated to cause programmed cell death. We discovered that thioredoxin-interacting protein (TXNIP) is a critical node in this “Terminal UPR.” TXNIP becomes rapidly induced by IRE1α, an ER bifunctional kinase/endoribonuclease (RNase). Hyperactivated IRE1α increases TXNIP mRNA stability by reducing levels of a TXNIP destabilizing micro-RNA, miR-17. In turn, elevated TXNIP protein activates the NLRP3 inflammasome, causing Caspase-1 cleavage and interleukin 1β (IL-1β) secretion. Txnip gene deletion reduces pancreatic β-cell death during ER stress, and suppresses diabetes caused by proinsulin misfolding in the Akita mouse. Finally, small molecule IRE1α RNase inhibitors suppress TXNIP production to block IL-1β secretion. In summary, the IRE1α-TXNIP pathway is used in the terminal UPR to promote sterile inflammation and programmed cell death, and may be targeted to develop effective treatments for cell degenerative diseases.
Checkpoint inhibitor pneumonitis (CIP) is an immunerelated adverse event that can occur after initiation of anti-programmed death 1/programmed death ligand 1 immune checkpoint inhibitor (ICI) therapy for the treatment of multiple malignancies, including NSCLC. However, the incidence of CIP has not been previously examined in a population that included both trial-enrolled and non-trialenrolled patients with advanced NSCLC. Furthermore, risk factors and other clinical characteristics associated with CIP severity are not known. In this study, we retrospectively examined clinical characteristics, incidence, and risk factors for CIP in a cohort of 205 patients with NSCLC, all of whom received anti-programmed death 1/programmed death ligand 1 ICIs. Our results demonstrate a higher incidence of CIP (19%) than previously reported in clinical trials (3%-5%). Our data also suggest that tumor histologic type may be a risk factor for CIP development. We observed a wide range of time to onset of CIP (median 82 days), with high morbidity and mortality associated with higher-grade CIP regardless of degree of immunosuppression. Our data provide new insight into the epidemiology and clinical
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.