Protoplanetary discs form and evolve in a wide variety of stellar environments and are accordingly exposed to a wide range of ambient far ultraviolet (FUV) field strengths. Strong FUV fields are known to drive vigorous gaseous flows from the outer disc. In this paper we conduct the first systematic exploration of the evolution of the solid component of discs subject to external photoevaporation. We find that the main effect of photoevaporation is to reduce the reservoir of dust at large radii and this leads to more efficient subsequent depletion of the disc dust due to radial drift. Efficient radial drift means that photoevaporation causes no significant increase of the dust to gas ratio in the disc. We show that the disc lifetime in both dust and gas is strongly dependent on the level of the FUV background and that the relationship between these two lifetimes just depends on the Shakura-Sunyaev α parameter, with the similar lifetimes observed for gas and dust in discs pointing to higher α values (∼ 10 −2 ). On the other hand the distribution of observed discs in the plane of disc size versus flux at 850 µm is better reproduced by lower α (∼ 10 −3 ). We find that photoevaporation does not assist rocky planet formation but need not inhibit mechanisms (such as pebble accretion at the water snow line) which can be effective sufficiently early in the disc's lifetime (i.e. well within a Myr).Key words: protoplanetary discs -planets and satellites: formation -submillimetre: planetary systems 1 The FUV background is conventionally denoted as a multiple of the Habing unit, G 0 , which is 1.6 × 10 −3 erg cm −2 over the energy range 6 − 13.6 eV (Habing 1968), such that the local interstellar field is 1.7 G 0
Recent observations have uncovered a correlation between the accretion rates (measured from the UV continuum excess) of protoplanetary discs and their masses inferred from observations of the sub-mm continuum. While viscous evolution models predict such a correlation, the predicted values are in tension with data obtained from the Lupus and Upper Scorpius star forming regions; for example, they underpredict the scatter in accretion rates, particularly in older regions. Here we argue that since the sub-mm observations trace the discs dust, by explicitly modelling the dust grain growth, evolution, and emission, we can better understand the correlation. We show that for turbulent viscosities with α ≲ 10−3, the depletion of dust from the disc due to radial drift means we can reproduce the range of masses and accretion rates seen in the Lupus and Upper Sco datasets. One consequence of this model is that the upper locus of accretion rates at a given dust mass does not evolve with the age of the region. Moreover, we find that internal photoevaporation is necessary to produce the lowest accretion rates observed. In order to replicate the correct dust masses at the time of disc dispersal, we favour relatively low photoevaporation rates ≲ 10−9 M⊙ yr−1 for most sources but cannot discriminate between EUV or X-ray driven winds. A limited number of sources, particularly in Lupus, are shown to have higher masses than predicted by our models which may be evidence for variations in the properties of the dust or dust trapping induced in substructures.
A recent survey of the inner 0.35 × 0.35 pc of the NGC 2024 star forming region revealed two distinct millimetre continuum disc populations that appear to be spatially segregated by the boundary of a dense cloud. The eastern (and more embedded) population is ∼0.2 − 0.5 Myr old, with an ALMA mm continuum disc detection rate of about 45 per cent. However this drops to only ∼15 per cent in the 1 Myr western population. When these distinct populations were presented it was suggested that the two main UV sources, IRS 1 (a B0.5V star in the western region) and IRS 2b (an O8V star in the eastern region, but embedded) have both been evaporating the discs in the depleted western population. In this paper we report the firm discovery in archival HST data of 4 proplyds and 4 further candidate proplyds in NGC 2024, confirming that external photoevaporation of discs is occurring. However, the locations of these proplyds changes the picture. Only three of them are in the depleted western population and their evaporation is dominated by IRS 1, with no obvious impact from IRS 2b. The other 5 proplyds are in the younger eastern region and being evaporated by IRS 2b. We propose that both populations are subject to significant external photoevaporation, which happens throughout the region wherever discs are not sufficiently shielded by the interstellar medium. The external photoevaporation and severe depletion of mm grains in the 0.2-0.5 Myr eastern part of NGC 2024 would be in competition even with very early planet formation.
We couple star cluster formation and feedback simulations of a Carina-like star forming region with 1D disc evolutionary models to study the impact of external photoevaporation on disc populations in massive star forming regions. To investigate the effect of shielding of young stellar objects by star forming material, we track the FUV field history at each star in the cluster with two methods: (i) Monte Carlo radiative transfer accounting for the shielding of stars from the FUV by the star forming cloud (ii) Geometric dilution of the radiation from other stars which ignores shielding effects. We found that significant shielding only occurs for a small fraction of discs and offers protection from external photoevaporation for <0.5 Myr. However, this initial protection can prevent significant early gas/dust mass loss and disc radius reduction due to external photoevaporation. Particularly, shielding for 0.5 Myr is sufficient for much of the solid reservoir to evolve to larger sizes where it will not be entrained in an external wind. Shielding is therefore potentially significant for terrestrial planet formation in retaining the solid mass budget, but the continued stripping of gas when shielding ends could still impact migration and the gas reservoir for giant planet atmospheres. Our models highlight issues with treating all discs in a cluster with a single characteristic age, since shielded objects are typically only the youngest. Our model predicts that the majority of discs in a 2 Myr Carina-like environment are subject to strong external photoevaporation.
Thermal disc winds occur in many contexts and may be particularly important to the secular evolution and dispersal of protoplanetary discs heated by high energy radiation from their central star. In this paper we generalise previous models of self-similar thermal winds - which have self-consistent morphology and variation of flow variables - to the case of launch from an elevated base and to non-isothermal conditions. These solutions are well-reproduced by hydrodynamic simulations, in which, as in the case of isothermal winds launched from the mid-plane, we find winds launch at the maximum Mach number for which the streamline solutions extend to infinity without encountering a singularity. We explain this behaviour based on the fact that lower Mach number solutions do not fill the spatial domain. We also show that hydrodynamic simulations reflect the corresponding self-similar models across a range of conditions appropriate to photoevaporating protoplanetary discs, even when gravity, centrifugal forces, or changes in the density gradient mean the problem is not inherently scale free. Of all the parameters varied, the elevation of the wind base affected the launch velocity and flow morphology most strongly, with temperature gradients causing only minor differences. We explore how launching from an elevated base affects Ne II line profiles from winds, finding it increases (reduces) the full width at half maximum (FWHM) of the line at low (high) inclination to the line of sight compared with models launched from the disc mid-plane and thus weakens the dependence of the FWHM on inclination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.