Worldwide use of hydrofluorocarbons (HFCs) is currently being regulated and phased out because of high global warming potentials (GWPs). Separation techniques for recycling refrigerants are needed so that HFCs can be dealt with responsibly. Many HFCs currently in use are azeotropic or near-azeotropic refrigerant blends and must be separated so that the components can be recycled and repurposed effectively. One such refrigerant is R-410A, which is a near-azeotropic 50/50 wt % mixture of pentafluoroethane (HFC-125) and difluoromethane (HFC-32). This study examined the use of the LTA zeolites for separating HFC-32 from HFC-125. Pure gas isotherms were measured using a XEMIS gravimetric microbalance with zeolites 3A, 4A, and 5A. Reversible sorption was observed for HFC-32 with zeolites 4A and 5A, whereas irreversible sorption was observed for HFC-125 with zeolite 5A. Negligible sorption was observed for HFC-125 with zeolites 3A and 4A, and although sorption of HFC-32 with zeolite 3A was observed, the process was slow, making the sorbent not commercially viable. The enthalpy of adsorption was predicted using the vapor adsorption equilibrium (VAE) analogue of the Clausius−Clapeyron equation and measured using a calorimeter for HFC-125 and HFC-32 with zeolite 5A and for HFC-32 with zeolite 4A. Molecular-level interactions between the LTA zeolites and HFCs were discussed and used to interpret pure gas isotherms and enthalpy of adsorption results. Overall, zeolites 4A and 5A were found to be good candidates for kinetically and thermodynamically separating R-410A, respectively.
Hydrofluorocarbons (HFCs) have been used extensively as refrigerants over the past four decades; however, HFCs are currently being phased out due to large global warming potentials. As the next generation of hydrofluoroolefin refrigerants are phased in, action must be taken to responsibly and sustainably deal with the HFCs currently in circulation. Ideally, unused HFCs can be reclaimed and recycled; however, many HFCs in circulation are azeotropic or near-azeotropic mixtures and must be separated before recycling. Previously, pure gas isotherm data were presented for both HFC-125 (pentafluoroethane) and HFC-32 (difluoromethane) with zeolite 5A, and it was concluded that this zeolite could separate refrigerant R-410A (50/50 wt % HFC-125/HFC-32). To further investigate the separation capabilities of zeolite 5A, binary adsorption was measured for the same system using the Integral Mass Balance method. Zeolite 5A showed a selectivity of 9.6–10.9 for HFC-32 over the composition range of 25–75 mol % HFC-125. Adsorbed phase activity coefficients were calculated from binary adsorption data. The Spreading Pressure Dependent, modified nonrandom two-liquid, and modified Wilson activity coefficient models were fit to experimental data, and the resulting activity coefficient models were used in Real Adsorbed Solution Theory (RAST). RAST binary adsorption model predictions were compared with Ideal Adsorbed Solution Theory (IAST) predictions made using the Dual-Site Langmuir, Tóth, and Jensen and Seaton pure gas isotherm models. Both IAST and RAST yielded qualitatively accurate predictions; however, quantitative accuracy was greatly improved using RAST models. Diffusion behavior of HFC-125 and HFC-32 was also investigated by fitting the isothermal Fickian diffusion model to kinetic data. Molecular-level phenomena were investigated to understand both thermodynamic and kinetic behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.