An efficient block matching and spectral shift estimation algorithm for freehand quasi-static ultrasound elastography is described in this paper. The proposed method provides a balance between computational speed and robustness against displacement estimation error and bias; a fundamental aspect of elastography. The new algorithm was tested on an extensive set of simulated 1-D RF ultrasound signals, replicating various strain profiles. Additionally, real 2-D scans were conducted on an ultrasound phantom with prescribed elastic properties; the algorithm output was further validated with a comparison to a finite element model (FEM) of the phantom. Clinical data from a breast cancer study and histology slides were used to demonstrate the in vivo use of the new elastography technique. The algorithm showed a significant computational savings (at least 60 times faster) over existing spectral shift analysis methods. Accurate strain images were produced in as little as 2 s with the scope for further speed enhancements through parallel processing; making real-time implementation a future possibility. Moreover, it demonstrated a robustness toward displacement estimation error when compared with conventional gradient-based techniques, and was able to perform at high strain values (>5%) while showing relative insensitivity to various parameters settings, such as sample rate and block window size; a desirable performance for a practical clinical tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.