Distributed robotic teams have long been touted as potential means to avoid sending humans into harmful situations. The ability of robotic teams to operate for extended periods without the fatigue human teams can experience, coupled with the ability to transport a variety of sensing and manipulation equipment and reducing costs of operation make them an attractive solution. Limited sensing capabilities, power, and mobility of individual robotic platforms can be overcome by forming teams of heterogeneous robots.This work addresses the power limitations associated with individual robots, which have finite amounts of power, and thus limited operational lifetimes. This work presents a method by which mobile docking stations can optimize their locations in order to maximize the power available to the deployed robots. Simulated results are presented in which teams of docking stations continuously recover and recharge a much larger team of deployed robots. It is assumed that the deployed robots are able to maintain a communication link between themselves and the docking station. This communication link is used to provide position information and available power to the docking stations. The communication link may be direct from the robot to docking station or it may require the use of ad hoc routing through other deployed robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.